Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Response to letter regarding article, "Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans".

Yu E, Calvert PA, Mercer JR, Harrison J, Baker L, Figg NL, Kumar S, Wang JJ, Hurst LA, Obaid DR, Logan A, West NE, Clarke MC, Vidal-Puig A, Murphy MP, Bennett MR.

Circulation. 2014 Mar 25;129(12):e408. doi: 10.1161/CIRCULATIONAHA.113.008032. No abstract available.

3.

Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans.

Yu E, Calvert PA, Mercer JR, Harrison J, Baker L, Figg NL, Kumar S, Wang JC, Hurst LA, Obaid DR, Logan A, West NE, Clarke MC, Vidal-Puig A, Murphy MP, Bennett MR.

Circulation. 2013 Aug 13;128(7):702-12. doi: 10.1161/CIRCULATIONAHA.113.002271. Epub 2013 Jul 10.

4.

Mitochondrial DNA damage, oxidative stress, and atherosclerosis: where there is smoke there is not always fire.

Davidson SM, Yellon DM.

Circulation. 2013 Aug 13;128(7):681-3. doi: 10.1161/CIRCULATIONAHA.113.004531. Epub 2013 Jul 10. No abstract available.

5.

Do vascular smooth muscle cells differentiate to macrophages in atherosclerotic lesions?

Swirski FK, Nahrendorf M.

Circ Res. 2014 Sep 12;115(7):605-6. doi: 10.1161/CIRCRESAHA.114.304925. No abstract available.

6.

Vascular Smooth Muscle Cell Senescence Promotes Atherosclerosis and Features of Plaque Vulnerability.

Wang J, Uryga AK, Reinhold J, Figg N, Baker L, Finigan A, Gray K, Kumar S, Clarke M, Bennett M.

Circulation. 2015 Nov 17;132(20):1909-19. doi: 10.1161/CIRCULATIONAHA.115.016457. Epub 2015 Sep 28.

7.

IGF-1 has plaque-stabilizing effects in atherosclerosis by altering vascular smooth muscle cell phenotype.

von der Thüsen JH, Borensztajn KS, Moimas S, van Heiningen S, Teeling P, van Berkel TJ, Biessen EA.

Am J Pathol. 2011 Feb;178(2):924-34. doi: 10.1016/j.ajpath.2010.10.007.

8.

Effects of DNA damage in smooth muscle cells in atherosclerosis.

Gray K, Kumar S, Figg N, Harrison J, Baker L, Mercer J, Littlewood T, Bennett M.

Circ Res. 2015 Feb 27;116(5):816-26. doi: 10.1161/CIRCRESAHA.116.304921. Epub 2014 Dec 18.

9.

Emerging regulators of vascular smooth muscle cell function in the development and progression of atherosclerosis.

Johnson JL.

Cardiovasc Res. 2014 Sep 1;103(4):452-60. doi: 10.1093/cvr/cvu171. Epub 2014 Jul 22. Review.

PMID:
25053639
10.

Atheromas feel the pressure: biomechanical stress and atherosclerosis.

Pyle AL, Young PP.

Am J Pathol. 2010 Jul;177(1):4-9. doi: 10.2353/ajpath.2010.090615. Epub 2010 Jun 17. Review.

12.

Differential effects of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 on atherosclerosis and monocyte/macrophage invasion.

Di Gregoli K, George SJ, Jackson CL, Newby AC, Johnson JL.

Cardiovasc Res. 2016 Feb 1;109(2):318-30. doi: 10.1093/cvr/cvv268. Epub 2015 Dec 8.

13.

Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis.

Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K, Schaller M, Feil R.

Circ Res. 2014 Sep 12;115(7):662-7. doi: 10.1161/CIRCRESAHA.115.304634. Epub 2014 Jul 28.

14.

Inactivation of Semicarbazide-Sensitive Amine Oxidase Stabilizes the Established Atherosclerotic Lesions via Inducing the Phenotypic Switch of Smooth Muscle Cells.

Peng Y, Wang J, Zhang M, Niu P, Yang M, Yang Y, Zhao Y.

PLoS One. 2016 Apr 4;11(4):e0152758. doi: 10.1371/journal.pone.0152758. eCollection 2016.

15.

Genetic Evidence Supports a Major Role for Akt1 in VSMCs During Atherogenesis.

Rotllan N, Wanschel AC, Fernández-Hernando A, Salerno AG, Offermanns S, Sessa WC, Fernández-Hernando C.

Circ Res. 2015 May 22;116(11):1744-52. doi: 10.1161/CIRCRESAHA.116.305895. Epub 2015 Apr 13.

16.

Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress.

Matthews C, Gorenne I, Scott S, Figg N, Kirkpatrick P, Ritchie A, Goddard M, Bennett M.

Circ Res. 2006 Jul 21;99(2):156-64. Epub 2006 Jun 22.

17.

Transforming growth factor-β signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway.

Gisterå A, Robertson AK, Andersson J, Ketelhuth DF, Ovchinnikova O, Nilsson SK, Lundberg AM, Li MO, Flavell RA, Hansson GK.

Sci Transl Med. 2013 Jul 31;5(196):196ra100. doi: 10.1126/scitranslmed.3006133.

18.

Absence of Akt1 reduces vascular smooth muscle cell migration and survival and induces features of plaque vulnerability and cardiac dysfunction during atherosclerosis.

Fernández-Hernando C, József L, Jenkins D, Di Lorenzo A, Sessa WC.

Arterioscler Thromb Vasc Biol. 2009 Dec;29(12):2033-40. doi: 10.1161/ATVBAHA.109.196394. Epub 2009 Sep 17.

19.

Aldosterone increases early atherosclerosis and promotes plaque inflammation through a placental growth factor-dependent mechanism.

McGraw AP, Bagley J, Chen WS, Galayda C, Nickerson H, Armani A, Caprio M, Carmeliet P, Jaffe IZ.

J Am Heart Assoc. 2013 Feb 22;2(1):e000018. doi: 10.1161/JAHA.112.000018.

20.

Converting smooth muscle cells to macrophage-like cells with KLF4 in atherosclerotic plaques.

Rosenfeld ME.

Nat Med. 2015 Jun;21(6):549-51. doi: 10.1038/nm.3875. No abstract available.

PMID:
26046571

Supplemental Content

Support Center