Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails.

Dutertre S, Jin AH, Vetter I, Hamilton B, Sunagar K, Lavergne V, Dutertre V, Fry BG, Antunes A, Venter DJ, Alewood PF, Lewis RJ.

Nat Commun. 2014 Mar 24;5:3521. doi: 10.1038/ncomms4521.

2.

Specialized insulin is used for chemical warfare by fish-hunting cone snails.

Safavi-Hemami H, Gajewiak J, Karanth S, Robinson SD, Ueberheide B, Douglass AD, Schlegel A, Imperial JS, Watkins M, Bandyopadhyay PK, Yandell M, Li Q, Purcell AW, Norton RS, Ellgaard L, Olivera BM.

Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):1743-8. doi: 10.1073/pnas.1423857112. Epub 2015 Jan 20.

3.

Comparative Venomics Reveals the Complex Prey Capture Strategy of the Piscivorous Cone Snail Conus catus.

Himaya SW, Jin AH, Dutertre S, Giacomotto J, Mohialdeen H, Vetter I, Alewood PF, Lewis RJ.

J Proteome Res. 2015 Oct 2;14(10):4372-81. doi: 10.1021/acs.jproteome.5b00630. Epub 2015 Sep 10.

PMID:
26322961
4.

The role of defensive ecological interactions in the evolution of conotoxins.

Prashanth JR, Dutertre S, Jin AH, Lavergne V, Hamilton B, Cardoso FC, Griffin J, Venter DJ, Alewood PF, Lewis RJ.

Mol Ecol. 2016 Jan;25(2):598-615. doi: 10.1111/mec.13504. Epub 2016 Jan 20.

PMID:
26614983
5.

Insights into the origins of fish hunting in venomous cone snails from studies of Conus tessulatus.

Aman JW, Imperial JS, Ueberheide B, Zhang MM, Aguilar M, Taylor D, Watkins M, Yoshikami D, Showers-Corneli P, Safavi-Hemami H, Biggs J, Teichert RW, Olivera BM.

Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):5087-92. doi: 10.1073/pnas.1424435112. Epub 2015 Apr 6.

6.

δ-Conotoxin SuVIA suggests an evolutionary link between ancestral predator defence and the origin of fish-hunting behaviour in carnivorous cone snails.

Jin AH, Israel MR, Inserra MC, Smith JJ, Lewis RJ, Alewood PF, Vetter I, Dutertre S.

Proc Biol Sci. 2015 Jul 22;282(1811). pii: 20150817. doi: 10.1098/rspb.2015.0817.

7.

High molecular weight components of the injected venom of fish-hunting cone snails target the vascular system.

Safavi-Hemami H, Möller C, Marí F, Purcell AW.

J Proteomics. 2013 Oct 8;91:97-105. doi: 10.1016/j.jprot.2013.07.007. Epub 2013 Jul 19.

PMID:
23872086
8.

Intraspecific variations in Conus geographus defence-evoked venom and estimation of the human lethal dose.

Dutertre S, Jin AH, Alewood PF, Lewis RJ.

Toxicon. 2014 Dec;91:135-44. doi: 10.1016/j.toxicon.2014.09.011. Epub 2014 Oct 7.

PMID:
25301479
9.

Recruitment of glycosyl hydrolase proteins in a cone snail venomous arsenal: further insights into biomolecular features of Conus venoms.

Violette A, Leonardi A, Piquemal D, Terrat Y, Biass D, Dutertre S, Noguier F, Ducancel F, Stöcklin R, Križaj I, Favreau P.

Mar Drugs. 2012 Feb;10(2):258-80. doi: 10.3390/md10020258. Epub 2012 Jan 31.

10.

Transcriptome and proteome of Conus planorbis identify the nicotinic receptors as primary target for the defensive venom.

Jin AH, Vetter I, Himaya SW, Alewood PF, Lewis RJ, Dutertre S.

Proteomics. 2015 Dec;15(23-24):4030-40. doi: 10.1002/pmic.201500220. Epub 2015 Nov 17.

PMID:
26506909
11.

Venom variation during prey capture by the cone snail, Conus textile.

Prator CA, Murayama KM, Schulz JR.

PLoS One. 2014 Jun 18;9(6):e98991. doi: 10.1371/journal.pone.0098991. eCollection 2014.

12.

Elucidation of the molecular envenomation strategy of the cone snail Conus geographus through transcriptome sequencing of its venom duct.

Hu H, Bandyopadhyay PK, Olivera BM, Yandell M.

BMC Genomics. 2012 Jun 28;13:284. doi: 10.1186/1471-2164-13-284.

13.

Venom Insulins of Cone Snails Diversify Rapidly and Track Prey Taxa.

Safavi-Hemami H, Lu A, Li Q, Fedosov AE, Biggs J, Showers Corneli P, Seger J, Yandell M, Olivera BM.

Mol Biol Evol. 2016 Nov;33(11):2924-2934. Epub 2016 Aug 14.

14.

Isolation of Lys-conopressin-G from the venom of the worm-hunting snail, Conus imperialis.

Nielsen DB, Dykert J, Rivier JE, McIntosh JM.

Toxicon. 1994 Jul;32(7):845-8.

PMID:
7940591
15.

Large-scale discovery of conopeptides and conoproteins in the injectable venom of a fish-hunting cone snail using a combined proteomic and transcriptomic approach.

Violette A, Biass D, Dutertre S, Koua D, Piquemal D, Pierrat F, Stöcklin R, Favreau P.

J Proteomics. 2012 Sep 18;75(17):5215-25. doi: 10.1016/j.jprot.2012.06.001. Epub 2012 Jun 13.

PMID:
22705119
16.

The projectile tooth of a fish-hunting cone snail: Conus catus injects venom into fish prey using a high-speed ballistic mechanism.

Schulz JR, Norton AG, Gilly WF.

Biol Bull. 2004 Oct;207(2):77-9. No abstract available.

PMID:
15501848
17.

Analysis of a cone snail's killer cocktail--the milked venom of Conus geographus.

Bingham JP, Baker MR, Chun JB.

Toxicon. 2012 Nov;60(6):1166-70. doi: 10.1016/j.toxicon.2012.07.014. Epub 2012 Aug 4.

18.

Identification of neuropeptide Y-like conopeptides from the venom of Conus betulinus.

Wu X, Shao X, Guo ZY, Chi CW.

Acta Biochim Biophys Sin (Shanghai). 2010 Jul;42(7):502-5. doi: 10.1093/abbs/gmq042. Epub 2010 Jun 8.

19.

High accuracy mass spectrometry comparison of Conus bandanus and Conus marmoreus venoms from the South Central Coast of Vietnam.

Nguyen B, Molgó J, Lamthanh H, Benoit E, Khuc TA, Ngo DN, Nguyen NT, Millares P, Le Caer JP.

Toxicon. 2013 Dec 1;75:148-59. doi: 10.1016/j.toxicon.2013.06.005. Epub 2013 Jun 21.

PMID:
23792454
20.

An efficient transcriptome analysis pipeline to accelerate venom peptide discovery and characterisation.

Prashanth JR, Lewis RJ.

Toxicon. 2015 Dec 1;107(Pt B):282-9. doi: 10.1016/j.toxicon.2015.09.012. Epub 2015 Sep 14.

PMID:
26376071

Supplemental Content

Support Center