Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 360

1.

Prediction of gait recovery in spinal cord injured individuals trained with robotic gait orthosis.

Niu X, Varoqui D, Kindig M, Mirbagheri MM.

J Neuroeng Rehabil. 2014 Mar 24;11:42. doi: 10.1186/1743-0003-11-42.

2.

Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury.

Varoqui D, Niu X, Mirbagheri MM.

J Neuroeng Rehabil. 2014 Mar 31;11:46. doi: 10.1186/1743-0003-11-46.

3.

The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study.

Fleerkotte BM, Koopman B, Buurke JH, van Asseldonk EH, van der Kooij H, Rietman JS.

J Neuroeng Rehabil. 2014 Mar 4;11:26. doi: 10.1186/1743-0003-11-26.

4.

Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial.

Alcobendas-Maestro M, Esclarín-Ruz A, Casado-López RM, Muñoz-González A, Pérez-Mateos G, González-Valdizán E, Martín JL.

Neurorehabil Neural Repair. 2012 Nov-Dec;26(9):1058-63. doi: 10.1177/1545968312448232.

PMID:
22699827
5.

The effect of robot-assisted lokomotor training on gait recovery: a multivariate analysis.

Niu X, Patel C, Varoqui D, Mirbagheri MM.

Conf Proc IEEE Eng Med Biol Soc. 2011;2011:3542-5. doi: 10.1109/IEMBS.2011.6090589.

PMID:
22255104
6.

Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis.

Mayr A, Kofler M, Quirbach E, Matzak H, Fröhlich K, Saltuari L.

Neurorehabil Neural Repair. 2007 Jul-Aug;21(4):307-14.

PMID:
17476001
7.

Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke.

Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, Hornby TG.

Neurorehabil Neural Repair. 2009 Jan;23(1):5-13. doi: 10.1177/1545968308326632.

PMID:
19109447
8.

Lokomat: a therapeutic chance for patients with chronic hemiplegia.

Uçar DE, Paker N, Buğdaycı D.

NeuroRehabilitation. 2014;34(3):447-53. doi: 10.3233/NRE-141054.

PMID:
24463231
9.

Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial.

Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG.

Arch Phys Med Rehabil. 2005 Apr;86(4):672-80.

PMID:
15827916
10.

Gait quality is improved by locomotor training in individuals with SCI regardless of training approach.

Nooijen CF, Ter Hoeve N, Field-Fote EC.

J Neuroeng Rehabil. 2009 Oct 2;6:36. doi: 10.1186/1743-0003-6-36.

11.

The effect of robot-assisted locomotor training on walking speed.

Niu X, Varoqui D, Kindig M, Mirbagheri MM.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3858-61. doi: 10.1109/EMBC.2012.6346809.

PMID:
23366770
12.

Influence of orthotic gait training with powered hip orthosis on walking in paraplegic patients.

Arazpour M, Bani MA, Hutchins SW, Curran S, Javanshir MA, Mousavi ME.

Disabil Rehabil Assist Technol. 2014 May;9(3):226-30. doi: 10.3109/17483107.2013.807442.

PMID:
24749556
13.

Balance training improves static stability and gait in chronic incomplete spinal cord injury subjects: a pilot study.

Tamburella F, Scivoletto G, Molinari M.

Eur J Phys Rehabil Med. 2013 Jun;49(3):353-64.

14.

Robotic-locomotor training as a tool to reduce neuromuscular abnormality in spinal cord injury: the application of system identification and advanced longitudinal modeling.

Mirbagheri MM, Kindig M, Niu X, Varoqui D, Conaway P.

IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650497. doi: 10.1109/ICORR.2013.6650497.

PMID:
24187312
15.

Robotic-assisted locomotor training enhances ankle performance in adults with incomplete spinal cord injury.

Krishnan V, Kindig M, Mirbagheri M.

J Rehabil Med. 2016 Oct 12;48(9):781-786. doi: 10.2340/16501977-2133.

16.

The effects of locomotor training with a robotic-gait orthosis (Lokomat) on neuromuscular properties in persons with chronic SCI.

Mirbagheri MM, Niu X, Kindig M, Varoqui D.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3854-7. doi: 10.1109/EMBC.2012.6346808.

PMID:
23366769
17.

Training with robot-applied resistance in people with motor-incomplete spinal cord injury: Pilot study.

Lam T, Pauhl K, Ferguson A, Malik RN; BKin., Krassioukov A, Eng JJ.

J Rehabil Res Dev. 2015;52(1):113-29. doi: 10.1682/JRRD.2014.03.0090.

18.

Comparison of training methods to improve walking in persons with chronic spinal cord injury: a randomized clinical trial.

Alexeeva N, Sames C, Jacobs PL, Hobday L, Distasio MM, Mitchell SA, Calancie B.

J Spinal Cord Med. 2011;34(4):362-79. doi: 10.1179/2045772311Y.0000000018.

19.

Safety and efficacy of at-home robotic locomotion therapy in individuals with chronic incomplete spinal cord injury: a prospective, pre-post intervention, proof-of-concept study.

Rupp R, Schließmann D, Plewa H, Schuld C, Gerner HJ, Weidner N, Hofer EP, Knestel M.

PLoS One. 2015 Mar 24;10(3):e0119167. doi: 10.1371/journal.pone.0119167. Erratum in: PLoS One. 2015;10(4):e0126999.

20.

Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes.

Field-Fote EC, Lindley SD, Sherman AL.

J Neurol Phys Ther. 2005 Sep;29(3):127-37.

PMID:
16398945

Supplemental Content

Support Center