Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 86

2.

Mating type and ploidy effect on the β-glucosidase activity and ethanol-producing performance of Saccharomyces cerevisiae with multiple δ-integrated bgl1 gene.

Wang J, Ma Y, Zhang K, Yang H, Liu C, Zou S, Hong J, Zhang M.

J Biotechnol. 2016 Aug 10;231:24-31. doi: 10.1016/j.jbiotec.2016.05.028. Epub 2016 May 24.

PMID:
27234882
3.

Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase.

Lee WH, Nan H, Kim HJ, Jin YS.

J Biotechnol. 2013 Sep 10;167(3):316-22. doi: 10.1016/j.jbiotec.2013.06.016. Epub 2013 Jul 5.

PMID:
23835155
4.

Kinetics of beta-glucosidase production by Saccharomyces cerevisiae recombinants harboring heterologous bgl genes.

Rajoka MI, Shaukat F, Ghauri MT, Shahid R.

Biotechnol Lett. 2003 Jun;25(12):945-8.

PMID:
12889828
6.

Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase.

Saitoh S, Tanaka T, Kondo A.

Appl Microbiol Biotechnol. 2011 Sep;91(6):1553-9. doi: 10.1007/s00253-011-3357-5. Epub 2011 Jun 4.

PMID:
21643701
7.

Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose.

Guo ZP, Zhang L, Ding ZY, Gu ZH, Shi GY.

Enzyme Microb Technol. 2011 Jun 10;49(1):105-12. doi: 10.1016/j.enzmictec.2011.02.008. Epub 2011 Mar 3.

PMID:
22112279
8.
9.

Enhancement of beta-glucosidase activity on the cell-surface of sake yeast by disruption of SED1.

Kotaka A, Sahara H, Kuroda K, Kondo A, Ueda M, Hata Y.

J Biosci Bioeng. 2010 May;109(5):442-6. doi: 10.1016/j.jbiosc.2009.11.003. Epub 2009 Dec 4.

PMID:
20347765
10.

Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production.

López-Alvarez A, Díaz-Pérez AL, Sosa-Aguirre C, Macías-Rodríguez L, Campos-García J.

J Biosci Bioeng. 2012 May;113(5):614-8. doi: 10.1016/j.jbiosc.2011.12.015. Epub 2012 Jan 26.

PMID:
22280963
11.

Industrial-scale production and rapid purification of an archaeal beta-glycosidase expressed in Saccharomyces cerevisiae.

Morana A, Moracci M, Ottombrino A, Ciaramella M, Rossi M, De Rosa M.

Biotechnol Appl Biochem. 1995 Dec;22 ( Pt 3):261-8.

PMID:
8573288
12.

Breeding of industrial diploid yeast strain with chromosomal integration of multiple beta-glucosidase genes.

Saitoh S, Tanaka T, Kondo A.

J Biosci Bioeng. 2008 Dec;106(6):594-7. doi: 10.1263/jbb.106.594.

PMID:
19134557
13.

Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes.

Cho WS, Duffin R, Howie SE, Scotton CJ, Wallace WA, Macnee W, Bradley M, Megson IL, Donaldson K.

Part Fibre Toxicol. 2011 Sep 6;8:27. doi: 10.1186/1743-8977-8-27.

14.

Construction of the industrial ethanol-producing strain of Saccharomyces cerevisiae able to ferment cellobiose and melibiose.

Zhang L, Guo ZP, Ding ZY, Wang ZX, Shi GY.

Prikl Biokhim Mikrobiol. 2012 Mar-Apr;48(2):243-8.

PMID:
22586919
15.

Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress.

Trevisan R, Delapedra G, Mello DF, Arl M, Schmidt ÉC, Meder F, Monopoli M, Cargnin-Ferreira E, Bouzon ZL, Fisher AS, Sheehan D, Dafre AL.

Aquat Toxicol. 2014 Aug;153:27-38. doi: 10.1016/j.aquatox.2014.03.018. Epub 2014 Apr 1.

PMID:
24745718
16.

Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.

Matsushika A, Sawayama S.

Enzyme Microb Technol. 2011 May 6;48(6-7):466-71. doi: 10.1016/j.enzmictec.2011.02.002. Epub 2011 Mar 2.

PMID:
22113018
17.

Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system.

Pérez-Gallardo RV, Briones LS, Díaz-Pérez AL, Gutiérrez S, Rodríguez-Zavala JS, Campos-García J.

FEMS Yeast Res. 2013 Dec;13(8):804-19. doi: 10.1111/1567-1364.12090. Epub 2013 Oct 7.

18.

Involvement of MyD88 in zinc oxide nanoparticle-induced lung inflammation.

Chang H, Ho CC, Yang CS, Chang WH, Tsai MH, Tsai HT, Lin P.

Exp Toxicol Pathol. 2013 Sep;65(6):887-96. doi: 10.1016/j.etp.2013.01.001. Epub 2013 Jan 24.

PMID:
23352990
19.

N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.

Du X, Takagi H.

Appl Microbiol Biotechnol. 2007 Jul;75(6):1343-51. Epub 2007 Mar 27.

PMID:
17387467
20.

Comparison of process configurations for ethanol production from acid- and alkali-pretreated corncob by Saccharomyces cerevisiae strains with and without β-glucosidase expression.

Wang G, Liu C, Hong J, Ma Y, Zhang K, Huang X, Zou S, Zhang M.

Bioresour Technol. 2013 Aug;142:154-61. doi: 10.1016/j.biortech.2013.05.033. Epub 2013 May 20.

PMID:
23735797

Supplemental Content

Support Center