Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 123

1.

Structural insight into the PTS sugar transporter EIIC.

McCoy JG, Levin EJ, Zhou M.

Biochim Biophys Acta. 2015 Mar;1850(3):577-85. doi: 10.1016/j.bbagen.2014.03.013. Epub 2014 Mar 20. Review.

2.

The Structure of a Sugar Transporter of the Glucose EIIC Superfamily Provides Insight into the Elevator Mechanism of Membrane Transport.

McCoy JG, Ren Z, Stanevich V, Lee J, Mitra S, Levin EJ, Poget S, Quick M, Im W, Zhou M.

Structure. 2016 Jun 7;24(6):956-64. doi: 10.1016/j.str.2016.04.003. Epub 2016 May 5.

3.

Molecular insights into proton coupled peptide transport in the PTR family of oligopeptide transporters.

Newstead S.

Biochim Biophys Acta. 2015 Mar;1850(3):488-99. doi: 10.1016/j.bbagen.2014.05.011. Epub 2014 May 21. Review.

4.

Crystal structure of a phosphorylation-coupled saccharide transporter.

Cao Y, Jin X, Levin EJ, Huang H, Zong Y, Quick M, Weng J, Pan Y, Love J, Punta M, Rost B, Hendrickson WA, Javitch JA, Rajashankar KR, Zhou M.

Nature. 2011 May 5;473(7345):50-4. doi: 10.1038/nature09939. Epub 2011 Apr 6.

5.

Molecular Simulation and Biochemical Studies Support an Elevator-type Transport Mechanism in EIIC.

Lee J, Ren Z, Zhou M, Im W.

Biophys J. 2017 Jun 6;112(11):2249-2252. doi: 10.1016/j.bpj.2017.04.040. Epub 2017 May 13.

PMID:
28506526
6.

Transcription regulators controlled by interaction with enzyme IIB components of the phosphoenolpyruvate: sugar phosphotransferase system.

Joyet P, Bouraoui H, Aké FM, Derkaoui M, Zébré AC, Cao TN, Ventroux M, Nessler S, Noirot-Gros MF, Deutscher J, Milohanic E.

Biochim Biophys Acta. 2013 Jul;1834(7):1415-24. doi: 10.1016/j.bbapap.2013.01.004. Epub 2013 Jan 11. Review.

PMID:
23318733
7.

The glucose transporter of Escherichia coli with circularly permuted domains is active in vivo and in vitro.

Gutknecht R, Manni M, Mao Q, Erni B.

J Biol Chem. 1998 Oct 2;273(40):25745-50.

8.

Crystal structure of the IIB subunit of a fructose permease (IIBLev) from Bacillus subtilis.

Schauder S, Nunn RS, Lanz R, Erni B, Schirmer T.

J Mol Biol. 1998 Feb 27;276(3):591-602.

PMID:
9551099
9.

Structural insights into functional lipid-protein interactions in secondary transporters.

Koshy C, Ziegler C.

Biochim Biophys Acta. 2015 Mar;1850(3):476-87. doi: 10.1016/j.bbagen.2014.05.010. Epub 2014 May 20. Review.

PMID:
24859688
10.

A promiscuous binding surface: crystal structure of the IIA domain of the glucose-specific permease from Mycoplasma capricolum.

Huang K, Kapadia G, Zhu PP, Peterkofsky A, Herzberg O.

Structure. 1998 Jun 15;6(6):697-710.

11.

Diversity of membrane transport proteins for vitamins in bacteria and archaea.

Jaehme M, Slotboom DJ.

Biochim Biophys Acta. 2015 Mar;1850(3):565-76. doi: 10.1016/j.bbagen.2014.05.006. Epub 2014 May 13. Review.

PMID:
24836521
12.

Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease.

Kasho VN, Smirnova IN, Kaback HR.

J Mol Biol. 2006 May 12;358(4):1060-70. Epub 2006 Mar 9.

14.

Bioinformatic analyses of the bacterial L-ascorbate phosphotransferase system permease family.

Hvorup R, Chang AB, Saier MH Jr.

J Mol Microbiol Biotechnol. 2003;6(3-4):191-205.

PMID:
15153772
15.
16.

Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis.

Reizer J, Bachem S, Reizer A, Arnaud M, Saier MH Jr, Stülke J.

Microbiology. 1999 Dec;145 ( Pt 12):3419-29.

PMID:
10627040
17.

Topological predictions for integral membrane permeases of the phosphoenolpyruvate:sugar phosphotransferase system.

Nguyen TX, Yen MR, Barabote RD, Saier MH Jr.

J Mol Microbiol Biotechnol. 2006;11(6):345-60. Review.

PMID:
17114898
18.

Structural characterization of the PTS IIA and IIB proteins associated with pneumococcal fucose utilization.

Higgins MA, Hamilton AM, Boraston AB.

Proteins. 2017 May;85(5):963-968. doi: 10.1002/prot.25264. Epub 2017 Mar 24.

PMID:
28168775
19.

The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways.

Houot L, Chang S, Pickering BS, Absalon C, Watnick PI.

J Bacteriol. 2010 Jun;192(12):3055-67. doi: 10.1128/JB.00213-10. Epub 2010 Apr 16.

20.

The use of LeuT as a model in elucidating binding sites for substrates and inhibitors in neurotransmitter transporters.

Loland CJ.

Biochim Biophys Acta. 2015 Mar;1850(3):500-10. doi: 10.1016/j.bbagen.2014.04.011. Epub 2014 Apr 24. Review.

PMID:
24769398

Supplemental Content

Support Center