Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Two different network topologies yield bistability in models of mesoderm and anterior mesendoderm specification in amphibians.

Brown LE, King JR, Loose M.

J Theor Biol. 2014 Jul 21;353:67-77. doi: 10.1016/j.jtbi.2014.03.015.

PMID:
24650939
2.

Multicellular Mathematical Modelling of Mesendoderm Formation in Amphibians.

Brown LE, Middleton AM, King JR, Loose M.

Bull Math Biol. 2016 Mar;78(3):436-67. doi: 10.1007/s11538-016-0150-8.

PMID:
26934886
3.

Bistability in a model of mesoderm and anterior mesendoderm specification in Xenopus laevis.

Middleton AM, King JR, Loose M.

J Theor Biol. 2009 Sep 7;260(1):41-55. doi: 10.1016/j.jtbi.2009.05.016.

PMID:
19490918
4.

A conserved mechanism for vertebrate mesoderm specification in urodele amphibians and mammals.

Swiers G, Chen YH, Johnson AD, Loose M.

Dev Biol. 2010 Jul 1;343(1-2):138-52. doi: 10.1016/j.ydbio.2010.04.002.

PMID:
20394741
5.

The Mix family of homeobox genes--key regulators of mesendoderm formation during vertebrate development.

Pereira LA, Wong MS, Mei Lim S, Stanley EG, Elefanty AG.

Dev Biol. 2012 Jul 15;367(2):163-77. doi: 10.1016/j.ydbio.2012.04.033. Review.

PMID:
22580160
6.

A genetic regulatory network for Xenopus mesendoderm formation.

Loose M, Patient R.

Dev Biol. 2004 Jul 15;271(2):467-78.

PMID:
15223347
7.

A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of ß-catenin/TCF signaling.

Röttinger E, Dahlin P, Martindale MQ.

PLoS Genet. 2012;8(12):e1003164. doi: 10.1371/journal.pgen.1003164.

PMID:
23300467
8.

Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos.

Chatfield J, O'Reilly MA, Bachvarova RF, Ferjentsik Z, Redwood C, Walmsley M, Patient R, Loose M, Johnson AD.

Development. 2014 Jun;141(12):2429-40. doi: 10.1242/dev.105346.

PMID:
24917499
9.

A role for the vegetally expressed Xenopus gene Mix.1 in endoderm formation and in the restriction of mesoderm to the marginal zone.

Lemaire P, Darras S, Caillol D, Kodjabachian L.

Development. 1998 Jul;125(13):2371-80.

PMID:
9609820
10.
11.

Patterning and lineage specification in the amphibian embryo.

Chan AP, Etkin LD.

Curr Top Dev Biol. 2001;51:1-67. Review.

PMID:
11236711
12.

Mouse Mix gene is activated early during differentiation of ES and F9 stem cells and induces endoderm in frog embryos.

Mohn D, Chen SW, Dias DC, Weinstein DC, Dyer MA, Sahr K, Ducker CE, Zahradka E, Keller G, Zaret KS, Gudas LJ, Baron MH.

Dev Dyn. 2003 Mar;226(3):446-59.

PMID:
12619131
13.

Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis.

Osada SI, Wright CV.

Development. 1999 Jun;126(14):3229-40.

PMID:
10375512
14.

Inference of the Xenopus tropicalis embryonic regulatory network and spatial gene expression patterns.

Zheng Z, Christley S, Chiu WT, Blitz IL, Xie X, Cho KW, Nie Q.

BMC Syst Biol. 2014 Jan 8;8:3. doi: 10.1186/1752-0509-8-3.

PMID:
24397936
15.

The pitx2 homeobox protein is required early for endoderm formation and nodal signaling. .

Faucourt M, Houliston E, Besnardeau L, Kimelman D, Lepage T.

Dev Biol. 2001 Jan 15;229(2):287-306.

PMID:
11203696
16.

Transcriptional regulation of mesoderm genes by MEF2D during early Xenopus development.

Kolpakova A, Katz S, Keren A, Rojtblat A, Bengal E.

PLoS One. 2013 Jul 19;8(7):e69693. doi: 10.1371/journal.pone.0069693.

PMID:
23894525
17.

A gene regulatory network controlling the embryonic specification of endoderm.

Peter IS, Davidson EH.

Nature. 2011 May 29;474(7353):635-9. doi: 10.1038/nature10100.

PMID:
21623371
18.

Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway.

Luxardi G, Marchal L, Thomé V, Kodjabachian L.

Development. 2010 Feb;137(3):417-26. doi: 10.1242/dev.039735.

PMID:
20056679
19.

Endoderm specification and differentiation in Xenopus embryos.

Horb ME, Slack JM.

Dev Biol. 2001 Aug 15;236(2):330-43.

PMID:
11476575
20.

Dual embryonic origin and patterning of the pharyngeal skeleton in the axolotl (Ambystoma mexicanum).

Sefton EM, Piekarski N, Hanken J.

Evol Dev. 2015 May-Jun;17(3):175-84. doi: 10.1111/ede.12124.

PMID:
25963195
Items per page

Supplemental Content

Support Center