Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Considerations of blood properties, outlet boundary conditions and energy loss approaches in computational fluid dynamics modeling.

Moon JY, Suh DC, Lee YS, Kim YW, Lee JS.

Neurointervention. 2014 Feb;9(1):1-8. doi: 10.5469/neuroint.2014.9.1.1. Epub 2014 Feb 28. Review.

2.

Development of a System for Measuring Wall Shear Stress in Blood Vessels using Magnetic Resonance Imaging and Computational Fluid Dynamics.

Yoshida K, Nagao T, Okada K, Miyazaki S, Yang X, Yamazaki Y, Murase K.

Igaku Butsuri. 2008;27(3):136-49.

PMID:
18367824
3.

Computational fluid dynamics investigation of a centrifugal blood pump.

Legendre D, Antunes P, Bock E, Andrade A, Biscegli JF, Ortiz JP.

Artif Organs. 2008 Apr;32(4):342-8. doi: 10.1111/j.1525-1594.2008.00552.x.

PMID:
18370951
4.

Minimizing the blood velocity differences between phase-contrast magnetic resonance imaging and computational fluid dynamics simulation in cerebral arteries and aneurysms.

Mohd Adib MAH, Ii S, Watanabe Y, Wada S.

Med Biol Eng Comput. 2017 Sep;55(9):1605-1619. doi: 10.1007/s11517-017-1617-y. Epub 2017 Feb 4.

PMID:
28161877
5.

Influence of model boundary conditions on blood flow patterns in a patient specific stenotic right coronary artery.

Liu B, Zheng J, Bach R, Tang D.

Biomed Eng Online. 2015;14 Suppl 1:S6. doi: 10.1186/1475-925X-14-S1-S6. Epub 2015 Jan 9.

6.

A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions.

Evju Ø, Valen-Sendstad K, Mardal KA.

J Biomech. 2013 Nov 15;46(16):2802-8. doi: 10.1016/j.jbiomech.2013.09.004. Epub 2013 Sep 16.

PMID:
24099744
7.

Boundary conditions in simulation of stenosed coronary arteries.

Mohammadi H, Bahramian F.

Cardiovasc Eng. 2009 Sep;9(3):83-91. doi: 10.1007/s10558-009-9078-z. Epub 2009 Aug 18.

PMID:
19688262
8.

Computational fluid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation.

Frauenfelder T, Lotfey M, Boehm T, Wildermuth S.

Cardiovasc Intervent Radiol. 2006 Jul-Aug;29(4):613-23. Erratum in: Cardiovasc Intervent Radiol. 2006 Jul-Aug;29(4):724.

PMID:
16508795
9.

PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.

Ford MD, Nikolov HN, Milner JS, Lownie SP, Demont EM, Kalata W, Loth F, Holdsworth DW, Steinman DA.

J Biomech Eng. 2008 Apr;130(2):021015. doi: 10.1115/1.2900724.

PMID:
18412502
10.

Evaluation of the influence of inlet boundary conditions on computational fluid dynamics for intracranial aneurysms: a virtual experiment.

Pereira VM, Brina O, Marcos Gonzales A, Narata AP, Bijlenga P, Schaller K, Lovblad KO, Ouared R.

J Biomech. 2013 May 31;46(9):1531-9. doi: 10.1016/j.jbiomech.2013.03.024. Epub 2013 Apr 18.

PMID:
23602597
11.

Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI.

Rispoli VC, Nielsen JF, Nayak KS, Carvalho JL.

Biomed Eng Online. 2015 Nov 26;14:110. doi: 10.1186/s12938-015-0104-7.

12.

Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements.

Rayz VL, Boussel L, Acevedo-Bolton G, Martin AJ, Young WL, Lawton MT, Higashida R, Saloner D.

J Biomech Eng. 2008 Oct;130(5):051011. doi: 10.1115/1.2970056.

PMID:
19045518
13.

A comparison of estimation methods for computational fluid dynamics outflow boundary conditions using patient-specific carotid artery.

Lee CJ, Uemiya N, Ishihara S, Zhang Y, Qian Y.

Proc Inst Mech Eng H. 2013 Jun;227(6):663-71. doi: 10.1177/0954411913479540. Epub 2013 Mar 6.

PMID:
23636745
14.

Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.

Akbarzadeh P.

Comput Methods Programs Biomed. 2016 Apr;126:3-19. doi: 10.1016/j.cmpb.2015.12.016. Epub 2016 Jan 2.

PMID:
26792174
15.

Proposition of an outflow boundary approach for carotid artery stenosis CFD simulation.

Zhang Y, Furusawa T, Sia SF, Umezu M, Qian Y.

Comput Methods Biomech Biomed Engin. 2013;16(5):488-94. doi: 10.1080/10255842.2011.625358. Epub 2012 Jan 30.

PMID:
22288780
16.

Validation of the coupling of magnetic resonance imaging velocity measurements with computational fluid dynamics in a U bend.

Glor FP, Westenberg JJ, Vierendeels J, Danilouchkine M, Verdonck P.

Artif Organs. 2002 Jul;26(7):622-35.

PMID:
12081521
17.

Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation.

Campbell IC, Ries J, Dhawan SS, Quyyumi AA, Taylor WR, Oshinski JN.

J Biomech Eng. 2012 May;134(5):051001. doi: 10.1115/1.4006681.

18.

Computational model of the fluid dynamics of a cannula inserted in a vessel: incidence of the presence of side holes in blood flow.

Grigioni M, Daniele C, Morbiducci U, D'Avenio G, Di Benedetto G, Del Gaudio C, Barbaro V.

J Biomech. 2002 Dec;35(12):1599-612.

PMID:
12445613
19.

Modeling and simulation of pulsatile blood flow with a physiologic wave pattern.

Marques PF, Oliveira ME, Franca AS, Pinotti M.

Artif Organs. 2003 May;27(5):478-85.

PMID:
12752213
20.

Patient-specific computational modeling of blood flow in the pulmonary arterial circulation.

Kheyfets VO, Rios L, Smith T, Schroeder T, Mueller J, Murali S, Lasorda D, Zikos A, Spotti J, Reilly JJ Jr, Finol EA.

Comput Methods Programs Biomed. 2015 Jul;120(2):88-101. doi: 10.1016/j.cmpb.2015.04.005. Epub 2015 Apr 28.

Supplemental Content

Support Center