Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 126

1.

Effects of titanium-based nanotube films on osteoblast behavior in vitro.

Stan MS, Memet I, Fratila C, Krasicka-Cydzik E, Roman I, Dinischiotu A.

J Biomed Mater Res A. 2015 Jan;103(1):48-56. doi: 10.1002/jbm.a.35148. Epub 2014 Mar 18.

PMID:
24639011
2.

Titanium dioxide nanotube films: Preparation, characterization and electrochemical biosensitivity towards alkaline phosphatase.

Roman I, Trusca RD, Soare ML, Fratila C, Krasicka-Cydzik E, Stan MS, Dinischiotu A.

Mater Sci Eng C Mater Biol Appl. 2014 Apr 1;37:374-82. doi: 10.1016/j.msec.2014.01.036. Epub 2014 Jan 24.

PMID:
24582263
3.

Biocompatibility of TiO2 nanotubes with different topographies.

Wang Y, Wen C, Hodgson P, Li Y.

J Biomed Mater Res A. 2014 Mar;102(3):743-51. doi: 10.1002/jbm.a.34738. Epub 2013 Jun 1.

PMID:
23554372
4.

An in vitro study of a titanium surface modified by simvastatin-loaded titania nanotubes-micelles.

Liu X, Li X, Li S, Zhou X, Li S, Wang Q, Dai J, Lai R, Xie L, Zhong M, Zhang Y, Zhou L.

J Biomed Nanotechnol. 2014 Feb;10(2):194-204.

PMID:
24738328
5.

Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion.

Gulati K, Ramakrishnan S, Aw MS, Atkins GJ, Findlay DM, Losic D.

Acta Biomater. 2012 Jan;8(1):449-56. doi: 10.1016/j.actbio.2011.09.004. Epub 2011 Sep 8.

PMID:
21930254
6.

Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties.

Kumeria T, Mon H, Aw MS, Gulati K, Santos A, Griesser HJ, Losic D.

Colloids Surf B Biointerfaces. 2015 Jun 1;130:255-63. doi: 10.1016/j.colsurfb.2015.04.021. Epub 2015 Apr 18.

PMID:
25944564
7.

[Fabrication of titanium dioxide nanotube array and effects of its osteoblast proliferation and alkaline phosphatase activity].

Yu WQ, Jiang XQ, Zhang YL, Zhang FQ.

Zhonghua Kou Qiang Yi Xue Za Zhi. 2009 Dec;44(12):751-5. Chinese.

PMID:
20193294
8.

[Effect of diameter-controlled Ti-TiO2 nanotubes on the adhesion of osteoblast and fibroblast].

Li HC, Zhang YM, Sun HP.

Zhonghua Kou Qiang Yi Xue Za Zhi. 2012 Feb;47(2):122-6. doi: 10.3760/cma.j.issn.1002-0098.2012.02.014. Chinese.

PMID:
22490253
9.

TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction.

Das K, Bose S, Bandyopadhyay A.

J Biomed Mater Res A. 2009 Jul;90(1):225-37. doi: 10.1002/jbm.a.32088.

PMID:
18496867
10.

Characterization and preosteoblastic behavior of hydroxyapatite-deposited nanotube surface of titanium prepared by anodization coupled with alternative immersion method.

Gu YX, Du J, Zhao JM, Si MS, Mo JJ, Lai HC.

J Biomed Mater Res B Appl Biomater. 2012 Nov;100(8):2122-30. doi: 10.1002/jbm.b.32777. Epub 2012 Jul 30.

PMID:
22847998
11.

Concentration-dependent effects of titanium and aluminium ions released from thermally oxidized Ti6Al4V alloy on human osteoblasts.

Saldaña L, Barranco V, García-Alonso MC, Vallés G, Escudero ML, Munuera L, Vilaboa N.

J Biomed Mater Res A. 2006 May;77(2):220-9.

PMID:
16392123
12.

Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy.

Saldaña L, Barranco V, González-Carrasco JL, Rodríguez M, Munuera L, Vilaboa N.

J Biomed Mater Res A. 2007 May;81(2):334-46.

PMID:
17120220
13.

Processing and Characterization of SrTiO₃-TiO₂ Nanoparticle-Nanotube Heterostructures on Titanium for Biomedical Applications.

Wang Y, Zhang D, Wen C, Li Y.

ACS Appl Mater Interfaces. 2015 Jul 29;7(29):16018-26. doi: 10.1021/acsami.5b04304. Epub 2015 Jul 14.

PMID:
26136139
14.

Cell response of anodized nanotubes on titanium and titanium alloys.

Minagar S, Wang J, Berndt CC, Ivanova EP, Wen C.

J Biomed Mater Res A. 2013 Sep;101(9):2726-39. doi: 10.1002/jbm.a.34575. Epub 2013 Feb 21. Review.

PMID:
23436766
15.

Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys.

Rahman ZU, Haider W, Pompa L, Deen KM.

Mater Sci Eng C Mater Biol Appl. 2016 Jan 1;58:160-8. doi: 10.1016/j.msec.2015.07.024. Epub 2015 Aug 7.

PMID:
26478299
16.

Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications.

Shtansky DV, Gloushankova NA, Sheveiko AN, Kharitonova MA, Moizhess TG, Levashov EA, Rossi F.

Biomaterials. 2005 Jun;26(16):2909-24.

PMID:
15603786
17.

Corrosion behavior and biocompatibility of nanostructured TiO2 film on Ti6Al4V.

Karpagavalli R, Zhou A, Chellamuthu P, Nguyen K.

J Biomed Mater Res A. 2007 Dec 15;83(4):1087-95.

PMID:
17584904
18.

TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion.

Balasundaram G, Yao C, Webster TJ.

J Biomed Mater Res A. 2008 Feb;84(2):447-53.

PMID:
17618492
19.

In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy.

García-Alonso MC, Saldaña L, Vallés G, González-Carrasco JL, González-Cabrero J, Martínez ME, Gil-Garay E, Munuera L.

Biomaterials. 2003 Jan;24(1):19-26.

PMID:
12417174
20.

Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects.

Cai K, Rechtenbach A, Hao J, Bossert J, Jandt KD.

Biomaterials. 2005 Oct;26(30):5960-71.

PMID:
15913761

Supplemental Content

Support Center