Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 148

1.

Solution-processed Ga-doped ZnO nanorod arrays as electron acceptors in organic solar cells.

Ginting RT, Yap CC, Yahaya M, Salleh MM.

ACS Appl Mater Interfaces. 2014 Apr 9;6(7):5308-18. doi: 10.1021/am5007832. Epub 2014 Mar 25.

PMID:
24636005
2.

Ga doping to significantly improve the performance of all-electrochemically fabricated Cu2O-ZnO nanowire solar cells.

Xie J, Guo C, Li CM.

Phys Chem Chem Phys. 2013 Oct 14;15(38):15905-11. doi: 10.1039/c3cp52460d. Epub 2013 Aug 14.

PMID:
23945632
3.

Effects of Ga- and Al-codoped ZnO buffer layer on the performance of inverted polymer solar cells.

Lee SJ, Kim DH, Kang JK, Kim DY, Kim HM, Han YS.

J Nanosci Nanotechnol. 2013 Dec;13(12):7839-43.

PMID:
24266149
4.

Low-Temperature Solution-Processed Thiophene-Sulfur-Doped Planar ZnO Nanorods as Electron-Transporting Layers for Enhanced Performance of Organic Solar Cells.

Ambade SB, Ambade RB, Bagde SS, Eom SH, Mane RS, Shin WS, Lee SH.

ACS Appl Mater Interfaces. 2017 Feb 1;9(4):3831-3841. doi: 10.1021/acsami.6b10843. Epub 2017 Jan 17.

PMID:
28029030
5.

Photovoltaic performance of dye-sensitized solar cell low temperature growth of ZnO nanorods using chemical bath deposition.

Lee JG, Choi YC, Lee DK, Ahn KS, Kim JH.

J Nanosci Nanotechnol. 2012 Apr;12(4):3469-72.

PMID:
22849148
6.

Polyethylenimine-assisted growth of high-aspect-ratio nitrogen-doped ZnO (NZO) nanorod arrays and their effect on performance of dye-sensitized solar cells.

Mahmood K, Swain BS, Han GS, Kim BJ, Jung HS.

ACS Appl Mater Interfaces. 2014 Jul 9;6(13):10028-43. doi: 10.1021/am500105x. Epub 2014 Jun 18. Retraction in: ACS Appl Mater Interfaces. 2016 Jan 20;8(2):1554.

PMID:
24940708
7.

Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO2 Nanorod Array.

Liao WP, Wu JJ.

J Phys Chem Lett. 2013 Jun 6;4(11):1983-8. doi: 10.1021/jz400996d. Epub 2013 May 29.

PMID:
26283138
8.

Microstructural and optical characteristics of solution-grown Ga-doped ZnO nanorod arrays.

Wang H, Baek S, Song J, Lee J, Lim S.

Nanotechnology. 2008 Feb 20;19(7):075607. doi: 10.1088/0957-4484/19/7/075607. Epub 2008 Jan 31.

PMID:
21817644
9.

CdS-decorated ZnO nanorod heterostructures for improved hybrid photovoltaic devices.

Rakshit T, Mondal SP, Manna I, Ray SK.

ACS Appl Mater Interfaces. 2012 Nov;4(11):6085-95. doi: 10.1021/am301721h. Epub 2012 Oct 30.

PMID:
23082825
10.

Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method.

Park GC, Hwang SM, Lim JH, Joo J.

Nanoscale. 2014;6(3):1840-7. doi: 10.1039/c3nr04957d.

PMID:
24356989
11.

Optimization of an Electron Transport Layer to Enhance the Power Conversion Efficiency of Flexible Inverted Organic Solar Cells.

Lee KH, Kumar B, Park HJ, Kim SW.

Nanoscale Res Lett. 2010 Aug 31;5(12):1908-12. doi: 10.1007/s11671-010-9769-9.

12.

Improving the efficiency of ZnO-based organic solar cell by self-assembled monolayer assisted modulation on the properties of ZnO acceptor layer.

Chiu JM, Tai Y.

ACS Appl Mater Interfaces. 2013 Aug 14;5(15):6946-50. doi: 10.1021/am400928n. Epub 2013 Jul 29.

PMID:
23895177
13.

A plasma sputtering decoration route to producing thickness-tunable ZnO/TiO(2) core/shell nanorod arrays.

Wang M, Huang C, Cao Y, Yu Q, Guo W, Liu Q, Liang J, Hong M.

Nanotechnology. 2009 Jul 15;20(28):285311. doi: 10.1088/0957-4484/20/28/285311. Epub 2009 Jun 23.

PMID:
19546501
14.

Characterization of inverted-type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy.

Kuwabara T, Kawahara Y, Yamaguchi T, Takahashi K.

ACS Appl Mater Interfaces. 2009 Oct;1(10):2107-10. doi: 10.1021/am900446x.

PMID:
20355841
15.

Solution-processed LiF-doped ZnO films for high performance low temperature field effect transistors and inverted solar cells.

Chang J, Lin Z, Zhu C, Chi C, Zhang J, Wu J.

ACS Appl Mater Interfaces. 2013 Jul 24;5(14):6687-93. doi: 10.1021/am4014488. Epub 2013 Jul 1.

PMID:
23773013
17.

Thickness dependence of the MoO(3) blocking layers on ZnO nanorod-inverted organic photovoltaic devices.

Wang M, Li Y, Huang H, Peterson ED, Nie W, Zhou W, Zeng W, Huang W, Fang G, Sun N, Zhao X, Carroll DL.

Appl Phys Lett. 2011 Mar 7;98(10):103305. Epub 2011 Mar 10.

18.

Effects of the morphology of nanostructured ZnO and interface modification on the device configuration and charge transport of ZnO/polymer hybrid solar cells.

Ruankham P, Yoshikawa S, Sagawa T.

Phys Chem Chem Phys. 2013 Jun 28;15(24):9516-22. doi: 10.1039/c3cp50266j.

PMID:
23446342
19.

Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer.

Ravirajan P, Peiró AM, Nazeeruddin MK, Graetzel M, Bradley DD, Durrant JR, Nelson J.

J Phys Chem B. 2006 Apr 20;110(15):7635-9.

PMID:
16610853
20.

All-polymer solar cells with bulk heterojunction nanolayers of chemically doped electron-donating and electron-accepting polymers.

Nam S, Shin M, Park S, Lee S, Kim H, Kim Y.

Phys Chem Chem Phys. 2012 Nov 21;14(43):15046-53. doi: 10.1039/c2cp43002a. Epub 2012 Oct 4.

PMID:
23034534

Supplemental Content

Support Center