Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Facile in situ synthesis of silver nanoparticles on procyanidin-grafted eggshell membrane and their catalytic properties.

Liang M, Su R, Huang R, Qi W, Yu Y, Wang L, He Z.

ACS Appl Mater Interfaces. 2014 Apr 9;6(7):4638-49. doi: 10.1021/am500665p. Epub 2014 Mar 21.

PMID:
24624939
2.

Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction.

Baruah B, Gabriel GJ, Akbashev MJ, Booher ME.

Langmuir. 2013 Apr 2;29(13):4225-34. doi: 10.1021/la305068p. Epub 2013 Mar 18.

PMID:
23461821
3.

In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol.

Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y.

Nanoscale. 2011 Aug;3(8):3357-63. doi: 10.1039/c1nr10405e. Epub 2011 Jul 15.

PMID:
21761072
4.

Silver nanoparticles-decorated polyphosphazene nanotubes: synthesis and applications.

Wang M, Fu J, Huang D, Zhang C, Xu Q.

Nanoscale. 2013 Sep 7;5(17):7913-9. doi: 10.1039/c3nr00010a.

PMID:
23852037
5.

Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract.

Gavade NL, Kadam AN, Suwarnkar MB, Ghodake VP, Garadkar KM.

Spectrochim Acta A Mol Biomol Spectrosc. 2015 Feb 5;136 Pt B:953-60. doi: 10.1016/j.saa.2014.09.118. Epub 2014 Oct 13.

PMID:
25459621
6.

One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction.

Chiou JR, Lai BH, Hsu KC, Chen DH.

J Hazard Mater. 2013 Mar 15;248-249:394-400. doi: 10.1016/j.jhazmat.2013.01.030. Epub 2013 Jan 24.

PMID:
23416483
7.

Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol.

Edison TJ, Sethuraman MG.

Spectrochim Acta A Mol Biomol Spectrosc. 2013 Mar;104:262-4. doi: 10.1016/j.saa.2012.11.084. Epub 2012 Dec 5.

PMID:
23274256
8.

Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction.

Saha S, Pal A, Kundu S, Basu S, Pal T.

Langmuir. 2010 Feb 16;26(4):2885-93. doi: 10.1021/la902950x.

PMID:
19957940
9.

Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol.

Narayanan KB, Park HH, Sakthivel N.

Spectrochim Acta A Mol Biomol Spectrosc. 2013 Dec;116:485-90. doi: 10.1016/j.saa.2013.07.066. Epub 2013 Aug 3.

PMID:
23973598
10.

Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides.

Gangula A, Podila R, M R, Karanam L, Janardhana C, Rao AM.

Langmuir. 2011 Dec 20;27(24):15268-74. doi: 10.1021/la2034559. Epub 2011 Nov 18.

PMID:
22026721
11.

Synthesis of Fe3O4@SiO2-Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol.

Chi Y, Yuan Q, Li Y, Tu J, Zhao L, Li N, Li X.

J Colloid Interface Sci. 2012 Oct 1;383(1):96-102. doi: 10.1016/j.jcis.2012.06.027. Epub 2012 Jun 19.

PMID:
22789800
12.

Activity of catalytic silver nanoparticles modulated by capping agent hydrophobicity.

Janani S, Stevenson P, Veerappan A.

Colloids Surf B Biointerfaces. 2014 May 1;117:528-33. doi: 10.1016/j.colsurfb.2014.03.008. Epub 2014 Mar 19.

PMID:
24698147
13.

Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol.

Zhang W, Tan F, Wang W, Qiu X, Qiao X, Chen J.

J Hazard Mater. 2012 May 30;217-218:36-42. doi: 10.1016/j.jhazmat.2012.01.056. Epub 2012 Mar 8.

PMID:
22459973
14.
15.

Preparation of gold nanoparticles on eggshell membrane and their biosensing application.

Zheng B, Qian L, Yuan H, Xiao D, Yang X, Paau MC, Choi MM.

Talanta. 2010 Jun 30;82(1):177-83. doi: 10.1016/j.talanta.2010.04.014. Epub 2010 Apr 14.

PMID:
20685454
16.

Photoconversion of 4-nitrophenol in the presence of hydrazine with AgNPs-TiO2 nanoparticles prepared by the sol-gel method.

Hernández-Gordillo A, Arroyo M, Zanella R, Rodríguez-González V.

J Hazard Mater. 2014 Mar 15;268:84-91. doi: 10.1016/j.jhazmat.2013.12.069. Epub 2014 Jan 8.

PMID:
24468530
17.

Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application.

Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawar SH.

Environ Sci Pollut Res Int. 2014 Jan;21(2):1503-13. doi: 10.1007/s11356-013-1764-0. Epub 2013 Aug 8.

PMID:
23925656
18.

Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel.

Ai L, Jiang J.

Bioresour Technol. 2013 Mar;132:374-7. doi: 10.1016/j.biortech.2012.10.161. Epub 2012 Nov 7.

PMID:
23206807
19.

Synthesis and application of hybrid polymer composites based on silver nanoparticles as corrosion protection for line pipe steel.

Atta AM, El-Mahdy GA, Al-Lohedan HA, Ezzat AO.

Molecules. 2014 May 16;19(5):6246-62. doi: 10.3390/molecules19056246.

20.

Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol.

Naraginti S, Sivakumar A.

Spectrochim Acta A Mol Biomol Spectrosc. 2014 Jul 15;128:357-62. doi: 10.1016/j.saa.2014.02.083. Epub 2014 Mar 12.

PMID:
24681320
Items per page

Supplemental Content

Write to the Help Desk