Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 193

1.

Serine protease inhibitor Kazal type 1 promotes epithelial-mesenchymal transition through EGFR signaling pathway in prostate cancer.

Wang C, Wang L, Su B, Lu N, Song J, Yang X, Fu W, Tan W, Han B.

Prostate. 2014 May;74(7):689-701. doi: 10.1002/pros.22787. Epub 2014 Mar 12.

PMID:
24619958
2.

SOX4 is associated with poor prognosis in prostate cancer and promotes epithelial-mesenchymal transition in vitro.

Wang L, Zhang J, Yang X, Chang YW, Qi M, Zhou Z, Zhang J, Han B.

Prostate Cancer Prostatic Dis. 2013 Dec;16(4):301-7. doi: 10.1038/pcan.2013.25. Epub 2013 Aug 6.

PMID:
23917306
3.
4.

Therapeutic targeting of SPINK1-positive prostate cancer.

Ateeq B, Tomlins SA, Laxman B, Asangani IA, Cao Q, Cao X, Li Y, Wang X, Feng FY, Pienta KJ, Varambally S, Chinnaiyan AM.

Sci Transl Med. 2011 Mar 2;3(72):72ra17. doi: 10.1126/scitranslmed.3001498.

5.

CX3CL1 increases invasiveness and metastasis by promoting epithelial-to-mesenchymal transition through the TACE/TGF-α/EGFR pathway in hypoxic androgen-independent prostate cancer cells.

Tang J, Xiao L, Cui R, Li D, Zheng X, Zhu L, Sun H, Pan Y, Du Y, Yu X.

Oncol Rep. 2016 Feb;35(2):1153-62. doi: 10.3892/or.2015.4470. Epub 2015 Dec 2.

PMID:
26718770
6.

Serine protease inhibitor Kazal type 1 promotes proliferation of pancreatic cancer cells through the epidermal growth factor receptor.

Ozaki N, Ohmuraya M, Hirota M, Ida S, Wang J, Takamori H, Higashiyama S, Baba H, Yamamura K.

Mol Cancer Res. 2009 Sep;7(9):1572-81. doi: 10.1158/1541-7786.MCR-08-0567. Epub 2009 Sep 8.

7.

Down-regulation of E-cadherin enhances prostate cancer chemoresistance via Notch signaling.

Wang W, Wang L, Mizokami A, Shi J, Zou C, Dai J, Keller ET, Lu Y, Zhang J.

Chin J Cancer. 2017 Mar 29;36(1):35. doi: 10.1186/s40880-017-0203-x.

8.

CD44 enhances the epithelial-mesenchymal transition in association with colon cancer invasion.

Cho SH, Park YS, Kim HJ, Kim CH, Lim SW, Huh JW, Lee JH, Kim HR.

Int J Oncol. 2012 Jul;41(1):211-8. doi: 10.3892/ijo.2012.1453. Epub 2012 Apr 30.

PMID:
22552741
9.

ERG-SOX4 interaction promotes epithelial-mesenchymal transition in prostate cancer cells.

Wang L, Li Y, Yang X, Yuan H, Li X, Qi M, Chang YW, Wang C, Fu W, Yang M, Zhang J, Han B.

Prostate. 2014 May;74(6):647-58. doi: 10.1002/pros.22783. Epub 2014 Jan 16.

PMID:
24435928
10.

Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin.

Zuo JH, Zhu W, Li MY, Li XH, Yi H, Zeng GQ, Wan XX, He QY, Li JH, Qu JQ, Chen Y, Xiao ZQ.

J Cell Biochem. 2011 Sep;112(9):2508-17. doi: 10.1002/jcb.23175.

PMID:
21557297
11.

NEDD9 crucially regulates TGF-β-triggered epithelial-mesenchymal transition and cell invasion in prostate cancer cells: involvement in cancer progressiveness.

Morimoto K, Tanaka T, Nitta Y, Ohnishi K, Kawashima H, Nakatani T.

Prostate. 2014 Jun;74(8):901-10. doi: 10.1002/pros.22809. Epub 2014 Apr 12.

PMID:
24728978
12.

Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells.

Gan Y, Shi C, Inge L, Hibner M, Balducci J, Huang Y.

Oncogene. 2010 Sep 2;29(35):4947-58. doi: 10.1038/onc.2010.240. Epub 2010 Jun 21.

PMID:
20562913
13.

Metformin inhibits epithelial-mesenchymal transition in prostate cancer cells: involvement of the tumor suppressor miR30a and its target gene SOX4.

Zhang J, Shen C, Wang L, Ma Q, Xia P, Qi M, Yang M, Han B.

Biochem Biophys Res Commun. 2014 Sep 26;452(3):746-52. doi: 10.1016/j.bbrc.2014.08.154. Epub 2014 Sep 6.

PMID:
25201727
14.

Sonic hedgehog and androgen signaling in tumor and stromal compartments drives epithelial-mesenchymal transition in prostate cancer.

Yamamichi F, Shigemura K, Behnsawy HM, Meligy FY, Huang WC, Li X, Yamanaka K, Hanioka K, Miyake H, Tanaka K, Kawabata M, Shirakawa T, Fujisawa M.

Scand J Urol. 2014 Dec;48(6):523-32. doi: 10.3109/21681805.2014.898336. Epub 2014 Mar 19.

PMID:
25356787
15.

Adiponectin as a potential tumor suppressor inhibiting epithelial-to-mesenchymal transition but frequently silenced in prostate cancer by promoter methylation.

Tan W, Wang L, Ma Q, Qi M, Lu N, Zhang L, Han B.

Prostate. 2015 Aug 1;75(11):1197-205. doi: 10.1002/pros.23002. Epub 2015 Apr 15.

PMID:
25877612
16.

Phospho-Akt pathway activation and inhibition depends on N-cadherin or phospho-EGFR expression in invasive human bladder cancer cell lines.

Wallerand H, Cai Y, Wainberg ZA, Garraway I, Lascombe I, Nicolle G, Thiery JP, Bittard H, Radvanyi F, Reiter RR.

Urol Oncol. 2010 Mar-Apr;28(2):180-8. doi: 10.1016/j.urolonc.2008.09.041. Epub 2008 Dec 12.

PMID:
19070520
17.

MiR-200 Regulates Epithelial-Mesenchymal Transition in Anaplastic Thyroid Cancer via EGF/EGFR Signaling.

Xue L, Su D, Li D, Gao W, Yuan R, Pang W.

Cell Biochem Biophys. 2015 May;72(1):185-90. doi: 10.1007/s12013-014-0435-1.

PMID:
25542369
18.

Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT).

Misra A, Pandey C, Sze SK, Thanabalu T.

PLoS One. 2012;7(11):e49766. doi: 10.1371/journal.pone.0049766. Epub 2012 Nov 21.

19.

Down-regulating ribonuclease inhibitor enhances metastasis of bladder cancer cells through regulating epithelial-mesenchymal transition and ILK signaling pathway.

Xiong D, Liou Y, Shu J, Li D, Zhang L, Chen J.

Exp Mol Pathol. 2014 Jun;96(3):411-21. doi: 10.1016/j.yexmp.2014.04.012. Epub 2014 Apr 24.

PMID:
24768914
20.

Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway.

Bhat FA, Sharmila G, Balakrishnan S, Arunkumar R, Elumalai P, Suganya S, Raja Singh P, Srinivasan N, Arunakaran J.

J Nutr Biochem. 2014 Nov;25(11):1132-1139. doi: 10.1016/j.jnutbio.2014.06.008. Epub 2014 Aug 1.

PMID:
25150162

Supplemental Content

Support Center