Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Evaluating the bottlenecks of recombinant IgM production in mammalian cells.

Chromikova V, Mader A, Steinfellner W, Kunert R.

Cytotechnology. 2015 Mar;67(2):343-56. doi: 10.1007/s10616-014-9693-4. Epub 2014 Mar 11.

2.

A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer?

Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NS, Yap MG.

Biotechnol Bioeng. 2009 Mar 1;102(4):1182-96. doi: 10.1002/bit.22158.

PMID:
18979540
3.

High level expression of functional human IgMs in human PER.C6 cells.

Tchoudakova A, Hensel F, Murillo A, Eng B, Foley M, Smith L, Schoenen F, Hildebrand A, Kelter AR, Ilag LL, Vollmers HP, Brandlein S, McIninch J, Chon J, Lee G, Cacciuttolo M.

MAbs. 2009 Mar-Apr;1(2):163-71. Epub 2009 Mar 24.

4.

Transcriptional and post-transcriptional limitations of high-yielding, PEI-mediated transient transfection with CHO and HEK-293E cells.

Rajendra Y, Kiseljak D, Baldi L, Wurm FM, Hacker DL.

Biotechnol Prog. 2015 Mar-Apr;31(2):541-9. doi: 10.1002/btpr.2064. Epub 2015 Feb 26.

PMID:
25683738
5.

Lengthening of high-yield production levels of monoclonal antibody-producing Chinese hamster ovary cells by downregulation of breast cancer 1.

Matsuyama R, Yamano N, Kawamura N, Omasa T.

J Biosci Bioeng. 2017 Mar;123(3):382-389. doi: 10.1016/j.jbiosc.2016.09.006. Epub 2016 Oct 12.

PMID:
27742176
6.

Glycan profile of CHO derived IgM purified by highly efficient single step affinity chromatography.

Hennicke J, Lastin AM, Reinhart D, Grünwald-Gruber C, Altmann F, Kunert R.

Anal Biochem. 2017 Nov 4;539:162-166. doi: 10.1016/j.ab.2017.10.020. [Epub ahead of print]

PMID:
29106908
7.

Cell line profiling to improve monoclonal antibody production.

Kang S, Ren D, Xiao G, Daris K, Buck L, Enyenihi AA, Zubarev R, Bondarenko PV, Deshpande R.

Biotechnol Bioeng. 2014 Apr;111(4):748-60. doi: 10.1002/bit.25141. Epub 2013 Nov 19.

PMID:
24249214
8.

The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability.

Matasci M, Baldi L, Hacker DL, Wurm FM.

Biotechnol Bioeng. 2011 Sep;108(9):2141-50. doi: 10.1002/bit.23167. Epub 2011 Apr 25.

PMID:
21495018
9.

Auditioning of CHO host cell lines using the artificial chromosome expression (ACE) technology.

Kennard ML, Goosney DL, Monteith D, Roe S, Fischer D, Mott J.

Biotechnol Bioeng. 2009 Oct 15;104(3):526-39. doi: 10.1002/bit.22407.

PMID:
19544304
10.

A comparative study of different vector designs for the mammalian expression of recombinant IgG antibodies.

Li J, Menzel C, Meier D, Zhang C, Dübel S, Jostock T.

J Immunol Methods. 2007 Jan 10;318(1-2):113-24. Epub 2006 Nov 13.

PMID:
17161420
11.

Increased recombinant protein production owing to expanded opportunities for vector integration in high chromosome number Chinese hamster ovary cells.

Yamano N, Takahashi M, Ali Haghparast SM, Onitsuka M, Kumamoto T, Frank J, Omasa T.

J Biosci Bioeng. 2016 Aug;122(2):226-31. doi: 10.1016/j.jbiosc.2016.01.002. Epub 2016 Feb 2.

PMID:
26850366
12.

Recombinant human hexamer-dominant IgM monoclonal antibody to ganglioside GM3 for treatment of melanoma.

Azuma Y, Ishikawa Y, Kawai S, Tsunenari T, Tsunoda H, Igawa T, Iida S, Nanami M, Suzuki M, Irie RF, Tsuchiya M, Yamada-Okabe H.

Clin Cancer Res. 2007 May 1;13(9):2745-50. Erratum in: Clin Cancer Res. 2007 Jul 1;13(13):4029-31.

13.

In search of expression bottlenecks in recombinant CHO cell lines--a case study.

Reinhart D, Sommeregger W, Debreczeny M, Gludovacz E, Kunert R.

Appl Microbiol Biotechnol. 2014 Jul;98(13):5959-65. doi: 10.1007/s00253-014-5584-z. Epub 2014 Feb 21.

PMID:
24557570
14.

Rapid generation of stable cell lines expressing high levels of erythropoietin, factor VIII, and an antihuman CD20 antibody using lentiviral vectors.

Baranyi L, Doering CB, Denning G, Gautney RE, Harris KT, Spencer HT, Roy A, Zayed H, Dropulic B.

Hum Gene Ther Methods. 2013 Aug;24(4):214-27. doi: 10.1089/hgtb.2013.002.

PMID:
23879627
15.

Genetic characterization of CHO production host DG44 and derivative recombinant cell lines.

Derouazi M, Martinet D, Besuchet Schmutz N, Flaction R, Wicht M, Bertschinger M, Hacker DL, Beckmann JS, Wurm FM.

Biochem Biophys Res Commun. 2006 Feb 24;340(4):1069-77. Epub 2005 Dec 27.

PMID:
16403443
16.

ATF6β-based fine-tuning of the unfolded protein response enhances therapeutic antibody productivity of Chinese hamster ovary cells.

Pieper LA, Strotbek M, Wenger T, Olayioye MA, Hausser A.

Biotechnol Bioeng. 2017 Jun;114(6):1310-1318. doi: 10.1002/bit.26263.

PMID:
28165157
17.

A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation.

Könitzer JD, Müller MM, Leparc G, Pauers M, Bechmann J, Schulz P, Schaub J, Enenkel B, Hildebrandt T, Hampel M, Tolstrup AB.

Biotechnol J. 2015 Sep;10(9):1412-23. doi: 10.1002/biot.201400652. Epub 2015 Aug 26.

PMID:
26212696
18.

Promoter methylation and transgene copy numbers predict unstable protein production in recombinant Chinese hamster ovary cell lines.

Osterlehner A, Simmeth S, Göpfert U.

Biotechnol Bioeng. 2011 Nov;108(11):2670-81. doi: 10.1002/bit.23216. Epub 2011 Jun 15.

PMID:
21618470
19.

High-yield preparation of recombinant human α-thrombin for therapeutic use.

Meta A, Hirashima M, Imamura T, Kawamura R, Yano K, Uehara K, Nakashima T.

J Biosci Bioeng. 2015 Oct;120(4):432-7. doi: 10.1016/j.jbiosc.2015.02.001. Epub 2015 Feb 27.

PMID:
25735923
20.

Quantitative iTRAQ LC-MS/MS proteomics reveals the cellular response to heterologous protein overexpression and the regulation of HAC1 in Pichia pastoris.

Lin XQ, Liang SL, Han SY, Zheng SP, Ye YR, Lin Y.

J Proteomics. 2013 Oct 8;91:58-72. doi: 10.1016/j.jprot.2013.06.031. Epub 2013 Jul 11.

PMID:
23851310

Supplemental Content

Support Center