Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Molecular pathways: BRAF induces bioenergetic adaptation by attenuating oxidative phosphorylation.

Haq R, Fisher DE, Widlund HR.

Clin Cancer Res. 2014 May 1;20(9):2257-63. doi: 10.1158/1078-0432.CCR-13-0898. Epub 2014 Mar 7. Review.

2.

Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF.

Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, Frederick DT, Hurley AD, Nellore A, Kung AL, Wargo JA, Song JS, Fisher DE, Arany Z, Widlund HR.

Cancer Cell. 2013 Mar 18;23(3):302-15. doi: 10.1016/j.ccr.2013.02.003. Epub 2013 Mar 7.

3.

Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the (V600E)BRAF oncogene.

Hall A, Meyle KD, Lange MK, Klima M, Sanderhoff M, Dahl C, Abildgaard C, Thorup K, Moghimi SM, Jensen PB, Bartek J, Guldberg P, Christensen C.

Oncotarget. 2013 Apr;4(4):584-99.

4.

Targeting metabolic reprogramming as a potential therapeutic strategy in melanoma.

Smith LK, Rao AD, McArthur GA.

Pharmacol Res. 2016 May;107:42-7. doi: 10.1016/j.phrs.2016.02.009. Epub 2016 Feb 26. Review.

PMID:
26924126
5.

Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1α and oxidative phosphorylation in melanoma.

Gopal YN, Rizos H, Chen G, Deng W, Frederick DT, Cooper ZA, Scolyer RA, Pupo G, Komurov K, Sehgal V, Zhang J, Patel L, Pereira CG, Broom BM, Mills GB, Ram P, Smith PD, Wargo JA, Long GV, Davies MA.

Cancer Res. 2014 Dec 1;74(23):7037-47. doi: 10.1158/0008-5472.CAN-14-1392. Epub 2014 Oct 8.

6.

Targeting mitochondrial metabolism by inhibiting autophagy in BRAF-driven cancers.

Strohecker AM, White E.

Cancer Discov. 2014 Jul;4(7):766-72. doi: 10.1158/2159-8290.CD-14-0196. Epub 2014 May 23. Review.

7.

Mitochondrial localization and regulation of BRAFV600E in thyroid cancer: a clinically used RAF inhibitor is unable to block the mitochondrial activities of BRAFV600E.

Lee MH, Lee SE, Kim DW, Ryu MJ, Kim SJ, Kim SJ, Kim YK, Park JH, Kweon GR, Kim JM, Lee JU, De Falco V, Jo YS, Shong M.

J Clin Endocrinol Metab. 2011 Jan;96(1):E19-30. doi: 10.1210/jc.2010-1071. Epub 2010 Oct 6.

PMID:
20926530
8.

Molecular drivers of cellular metabolic reprogramming in melanoma.

Abildgaard C, Guldberg P.

Trends Mol Med. 2015 Mar;21(3):164-71. doi: 10.1016/j.molmed.2014.12.007. Epub 2015 Jan 21. Review.

PMID:
25618774
9.

Proliferation and survival molecules implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic mutations.

Preto A, Gonçalves J, Rebocho AP, Figueiredo J, Meireles AM, Rocha AS, Vasconcelos HM, Seca H, Seruca R, Soares P, Sobrinho-Simões M.

BMC Cancer. 2009 Oct 31;9:387. doi: 10.1186/1471-2407-9-387.

10.

Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR.

Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A, Bernards R.

Nature. 2012 Jan 26;483(7387):100-3. doi: 10.1038/nature10868.

PMID:
22281684
11.

A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence.

Kaplon J, Zheng L, Meissl K, Chaneton B, Selivanov VA, Mackay G, van der Burg SH, Verdegaal EM, Cascante M, Shlomi T, Gottlieb E, Peeper DS.

Nature. 2013 Jun 6;498(7452):109-12. doi: 10.1038/nature12154. Epub 2013 May 19.

PMID:
23685455
12.

Simultaneous suppression of MITF and BRAF V600E enhanced inhibition of melanoma cell proliferation.

Kido K, Sumimoto H, Asada S, Okada SM, Yaguchi T, Kawamura N, Miyagishi M, Saida T, Kawakami Y.

Cancer Sci. 2009 Oct;100(10):1863-9. doi: 10.1111/j.1349-7006.2009.01266.x. Epub 2009 Jun 29.

13.
14.

Molecular pathways: adaptive kinome reprogramming in response to targeted inhibition of the BRAF-MEK-ERK pathway in cancer.

Johnson GL, Stuhlmiller TJ, Angus SP, Zawistowski JS, Graves LM.

Clin Cancer Res. 2014 May 15;20(10):2516-22. doi: 10.1158/1078-0432.CCR-13-1081. Epub 2014 Mar 24.

15.

BGB-283, a Novel RAF Kinase and EGFR Inhibitor, Displays Potent Antitumor Activity in BRAF-Mutated Colorectal Cancers.

Tang Z, Yuan X, Du R, Cheung SH, Zhang G, Wei J, Zhao Y, Feng Y, Peng H, Zhang Y, Du Y, Hu X, Gong W, Liu Y, Gao Y, Liu Y, Hao R, Li S, Wang S, Ji J, Zhang L, Li S, Sutton D, Wei M, Zhou C, Wang L, Luo L.

Mol Cancer Ther. 2015 Oct;14(10):2187-97. doi: 10.1158/1535-7163.MCT-15-0262. Epub 2015 Jul 24.

16.

Molecular pathways: response and resistance to BRAF and MEK inhibitors in BRAF(V600E) tumors.

Das Thakur M, Stuart DD.

Clin Cancer Res. 2014 Mar 1;20(5):1074-80. doi: 10.1158/1078-0432.CCR-13-0103. Epub 2013 Dec 18. Review.

17.

The influence of the BRAF V600E mutation in thyroid cancer cell lines on the anticancer effects of 5-aminoimidazole-4-carboxamide-ribonucleoside.

Choi HJ, Kim TY, Chung N, Yim JH, Kim WG, Kim JA, Kim WB, Shong YK.

J Endocrinol. 2011 Oct;211(1):79-85. doi: 10.1530/JOE-11-0260. Epub 2011 Jul 27.

18.

Therapeutic strategies for targeting BRAF in human cancer.

Pratilas CA, Solit DB.

Rev Recent Clin Trials. 2007 May;2(2):121-34. Review.

PMID:
18473997
19.

Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma.

Montagut C, Sharma SV, Shioda T, McDermott U, Ulman M, Ulkus LE, Dias-Santagata D, Stubbs H, Lee DY, Singh A, Drew L, Haber DA, Settleman J.

Cancer Res. 2008 Jun 15;68(12):4853-61. doi: 10.1158/0008-5472.CAN-07-6787.

20.

Therapeutic strategies for inhibiting oncogenic BRAF signaling.

Halilovic E, Solit DB.

Curr Opin Pharmacol. 2008 Aug;8(4):419-26. doi: 10.1016/j.coph.2008.06.014. Epub 2008 Aug 3. Review.

PMID:
18644254

Supplemental Content

Support Center