Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Plants utilize a highly conserved system for repair of NADH and NADPH hydrates.

Niehaus TD, Richardson LG, Gidda SK, ElBadawi-Sidhu M, Meissen JK, Mullen RT, Fiehn O, Hanson AD.

Plant Physiol. 2014 May;165(1):52-61. doi: 10.1104/pp.114.236539. Epub 2014 Mar 5.

2.

A pathway for repair of NAD(P)H in plants.

Colinas M, Shaw HV, Loubéry S, Kaufmann M, Moulin M, Fitzpatrick TB.

J Biol Chem. 2014 May 23;289(21):14692-706. doi: 10.1074/jbc.M114.556092. Epub 2014 Apr 4.

3.

Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair.

Marbaix AY, Noël G, Detroux AM, Vertommen D, Van Schaftingen E, Linster CL.

J Biol Chem. 2011 Dec 2;286(48):41246-52. doi: 10.1074/jbc.C111.310847. Epub 2011 Oct 12.

4.

Identification of mitochondrial coenzyme a transporters from maize and Arabidopsis.

Zallot R, Agrimi G, Lerma-Ortiz C, Teresinski HJ, Frelin O, Ellens KW, Castegna A, Russo A, de Crécy-Lagard V, Mullen RT, Palmieri F, Hanson AD.

Plant Physiol. 2013 Jun;162(2):581-8. doi: 10.1104/pp.113.218081. Epub 2013 Apr 16.

5.

Occurrence and subcellular distribution of the NADPHX repair system in mammals.

Marbaix AY, Tyteca D, Niehaus TD, Hanson AD, Linster CL, Van Schaftingen E.

Biochem J. 2014 May 15;460(1):49-58. doi: 10.1042/BJ20131482.

PMID:
24611804
6.

Identification and characterization of the missing pyrimidine reductase in the plant riboflavin biosynthesis pathway.

Hasnain G, Frelin O, Roje S, Ellens KW, Ali K, Guan JC, Garrett TJ, de Crécy-Lagard V, Gregory JF 3rd, McCarty DR, Hanson AD.

Plant Physiol. 2013 Jan;161(1):48-56. doi: 10.1104/pp.112.208488. Epub 2012 Nov 13.

7.

Arabidopsis and maize RidA proteins preempt reactive enamine/imine damage to branched-chain amino acid biosynthesis in plastids.

Niehaus TD, Nguyen TN, Gidda SK, ElBadawi-Sidhu M, Lambrecht JA, McCarty DR, Downs DM, Cooper AJ, Fiehn O, Mullen RT, Hanson AD.

Plant Cell. 2014 Jul;26(7):3010-22. doi: 10.1105/tpc.114.126854. Epub 2014 Jul 28.

8.

Structural and biochemical insights into nucleotide-rhamnose synthase/epimerase-reductase from Arabidopsis thaliana.

Han X, Qian L, Zhang L, Liu X.

Biochim Biophys Acta. 2015 Oct;1854(10 Pt A):1476-86. doi: 10.1016/j.bbapap.2015.06.007. Epub 2015 Jun 23.

PMID:
26116145
9.

Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport.

Wallström SV, Florez-Sarasa I, Araújo WL, Escobar MA, Geisler DA, Aidemark M, Lager I, Fernie AR, Ribas-Carbó M, Rasmusson AG.

Plant Cell Physiol. 2014 May;55(5):881-96. doi: 10.1093/pcp/pcu021. Epub 2014 Jan 30.

10.

Expression, in vivo localization and phylogenetic analysis of a pyridoxine 5'-phosphate oxidase in Arabidopsis thaliana.

Sang Y, Locy RD, Goertzen LR, Rashotte AM, Si Y, Kang K, Singh NK.

Plant Physiol Biochem. 2011 Jan;49(1):88-95. doi: 10.1016/j.plaphy.2010.10.003. Epub 2010 Oct 20.

PMID:
21051239
11.

Prediction of the active-site structure and NAD(+) binding in SQD1, a protein essential for sulfolipid biosynthesis in Arabidopsis.

Essigmann B, Hespenheide BM, Kuhn LA, Benning C.

Arch Biochem Biophys. 1999 Sep 1;369(1):30-41.

PMID:
10462438
12.

NAXE Mutations Disrupt the Cellular NAD(P)HX Repair System and Cause a Lethal Neurometabolic Disorder of Early Childhood.

Kremer LS, Danhauser K, Herebian D, Petkovic Ramadža D, Piekutowska-Abramczuk D, Seibt A, Müller-Felber W, Haack TB, Płoski R, Lohmeier K, Schneider D, Klee D, Rokicki D, Mayatepek E, Strom TM, Meitinger T, Klopstock T, Pronicka E, Mayr JA, Baric I, Distelmaier F, Prokisch H.

Am J Hum Genet. 2016 Oct 6;99(4):894-902. doi: 10.1016/j.ajhg.2016.07.018. Epub 2016 Sep 8.

13.
14.

Identification of a pyridoxine (pyridoxamine) 5'-phosphate oxidase from Arabidopsis thaliana.

Sang Y, Barbosa JM, Wu H, Locy RD, Singh NK.

FEBS Lett. 2007 Feb 6;581(3):344-8. Epub 2007 Jan 3.

15.

Dual targeting of organellar seryl-tRNA synthetase to maize mitochondria and chloroplasts.

Rokov-Plavec J, Dulic M, Duchêne AM, Weygand-Durasevic I.

Plant Cell Rep. 2008 Jul;27(7):1157-68. doi: 10.1007/s00299-008-0542-9. Epub 2008 Apr 5.

PMID:
18392626
16.

Ca2+-binding and Ca2+-independent respiratory NADH and NADPH dehydrogenases of Arabidopsis thaliana.

Geisler DA, Broselid C, Hederstedt L, Rasmusson AG.

J Biol Chem. 2007 Sep 28;282(39):28455-64. Epub 2007 Aug 2.

17.

Dual targeting to mitochondria and plastids of AtBT1 and ZmBT1, two members of the mitochondrial carrier family.

Bahaji A, Ovecka M, Bárány I, Risueño MC, Muñoz FJ, Baroja-Fernández E, Montero M, Li J, Hidalgo M, Sesma MT, Ezquer I, Testillano PS, Pozueta-Romero J.

Plant Cell Physiol. 2011 Apr;52(4):597-609. doi: 10.1093/pcp/pcr019. Epub 2011 Feb 16.

PMID:
21330298
18.

Equilibrium of 5,6-hydration of NADH and mechanism of ATP-dependent dehydration.

Acheson SA, Kirkman HN, Wolfenden R.

Biochemistry. 1988 Sep 20;27(19):7371-5.

PMID:
3061454
19.

The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris.

Liu YJ, Norberg FE, Szilágyi A, De Paepe R, Akerlund HE, Rasmusson AG.

Plant Cell Physiol. 2008 Feb;49(2):251-63. doi: 10.1093/pcp/pcn001. Epub 2008 Jan 8.

PMID:
18182402
20.

Subcellular and tissue localization of NAD kinases from Arabidopsis: compartmentalization of de novo NADP biosynthesis.

Waller JC, Dhanoa PK, Schumann U, Mullen RT, Snedden WA.

Planta. 2010 Jan;231(2):305-17. doi: 10.1007/s00425-009-1047-7. Epub 2009 Nov 17.

PMID:
19921251

Supplemental Content

Support Center