Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Mitohormesis in muscle cells: a morphological, molecular, and proteomic approach.

Barbieri E, Sestili P, Vallorani L, Guescini M, Calcabrini C, Gioacchini AM, Annibalini G, Lucertini F, Piccoli G, Stocchi V.

Muscles Ligaments Tendons J. 2014 Feb 24;3(4):254-66.

2.

Mitochondrial biogenesis: pharmacological approaches.

Valero T.

Curr Pharm Des. 2014;20(35):5507-9.

PMID:
24606795
3.

How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis).

Ristow M, Zarse K.

Exp Gerontol. 2010 Jun;45(6):410-8. doi: 10.1016/j.exger.2010.03.014. Review.

PMID:
20350594
4.

Mitochondrial hormesis in pancreatic β cells: does uncoupling protein 2 play a role?

Li N, Stojanovski S, Maechler P.

Oxid Med Cell Longev. 2012;2012:740849. doi: 10.1155/2012/740849. Review.

5.

Mitohormesis: Promoting Health and Lifespan by Increased Levels of Reactive Oxygen Species (ROS).

Ristow M, Schmeisser K.

Dose Response. 2014 Jan 31;12(2):288-341. doi: 10.2203/dose-response.13-035.Ristow.

6.

Mitohormesis in exercise training.

Merry TL, Ristow M.

Free Radic Biol Med. 2016 Sep;98:123-30. doi: 10.1016/j.freeradbiomed.2015.11.032.

PMID:
26654757
8.

Mitochondria, reactive oxygen species, and chronological aging: a message from yeast.

Pan Y.

Exp Gerontol. 2011 Nov;46(11):847-52. doi: 10.1016/j.exger.2011.08.007. Review.

PMID:
21884780
9.

NOD2 activation induces oxidative stress contributing to mitochondrial dysfunction and insulin resistance in skeletal muscle cells.

Maurya CK, Arha D, Rai AK, Kumar SK, Pandey J, Avisetti DR, Kalivendi SV, Klip A, Tamrakar AK.

Free Radic Biol Med. 2015 Dec;89:158-69. doi: 10.1016/j.freeradbiomed.2015.07.154.

PMID:
26404168
10.

Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis.

Singh F, Charles AL, Schlagowski AI, Bouitbir J, Bonifacio A, Piquard F, Krähenbühl S, Geny B, Zoll J.

Biochim Biophys Acta. 2015 Jul;1853(7):1574-85. doi: 10.1016/j.bbamcr.2015.03.006.

11.
12.

Targeting of mitochondrial reactive oxygen species production does not avert lipid-induced insulin resistance in muscle tissue from mice.

Paglialunga S, van Bree B, Bosma M, Valdecantos MP, Amengual-Cladera E, Jörgensen JA, van Beurden D, den Hartog GJ, Ouwens DM, Briedé JJ, Schrauwen P, Hoeks J.

Diabetologia. 2012 Oct;55(10):2759-68. doi: 10.1007/s00125-012-2626-x.

PMID:
22782287
13.

Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux.

Ost M, Keipert S, van Schothorst EM, Donner V, van der Stelt I, Kipp AP, Petzke KJ, Jove M, Pamplona R, Portero-Otin M, Keijer J, Klaus S.

FASEB J. 2015 Apr;29(4):1314-28. doi: 10.1096/fj.14-261503.

14.

Proteomic analysis of mitochondria from senescent Podospora anserina casts new light on ROS dependent aging mechanisms.

Plohnke N, Hamann A, Poetsch A, Osiewacz HD, Rögner M, Rexroth S.

Exp Gerontol. 2014 Aug;56:13-25. doi: 10.1016/j.exger.2014.02.008.

PMID:
24556281
15.

Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice.

Zabielski P, Lanza IR, Gopala S, Heppelmann CJ, Bergen HR 3rd, Dasari S, Nair KS.

Diabetes. 2016 Mar;65(3):561-73. doi: 10.2337/db15-0823.

16.

Sestrin2, a Regulator of Thermogenesis and Mitohormesis in Brown Adipose Tissue.

Ro SH, Semple I, Ho A, Park HW, Lee JH.

Front Endocrinol (Lausanne). 2015 Jul 24;6:114. doi: 10.3389/fendo.2015.00114. Review.

17.

Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance.

Ghosh S, Lertwattanarak R, Lefort N, Molina-Carrion M, Joya-Galeana J, Bowen BP, Garduno-Garcia Jde J, Abdul-Ghani M, Richardson A, DeFronzo RA, Mandarino L, Van Remmen H, Musi N.

Diabetes. 2011 Aug;60(8):2051-60. doi: 10.2337/db11-0121.

18.

Complete failure of insulin-transmitted signaling, but not obesity-induced insulin resistance, impairs respiratory chain function in muscle.

Franko A, von Kleist-Retzow JC, Böse M, Sanchez-Lasheras C, Brodesser S, Krut O, Kunz WS, Wiedermann D, Hoehn M, Stöhr O, Moll L, Freude S, Krone W, Schubert M, Wiesner RJ.

J Mol Med (Berl). 2012 Oct;90(10):1145-60. doi: 10.1007/s00109-012-0887-y.

PMID:
22411022
19.

FTO is increased in muscle during type 2 diabetes, and its overexpression in myotubes alters insulin signaling, enhances lipogenesis and ROS production, and induces mitochondrial dysfunction.

Bravard A, Lefai E, Meugnier E, Pesenti S, Disse E, Vouillarmet J, Peretti N, Rabasa-Lhoret R, Laville M, Vidal H, Rieusset J.

Diabetes. 2011 Jan;60(1):258-68. doi: 10.2337/db10-0281.

20.

Altered skeletal muscle subsarcolemmal mitochondrial compartment during catch-up fat after caloric restriction.

Crescenzo R, Lionetti L, Mollica MP, Ferraro M, D'Andrea E, Mainieri D, Dulloo AG, Liverini G, Iossa S.

Diabetes. 2006 Aug;55(8):2286-93.

Items per page

Supplemental Content

Support Center