Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95


Arterial input function sampling without surgery in rats for positron emission tomography molecular imaging.

Croteau E, Poulin E, Tremblay S, Dumulon-Perreault V, Sarrhini O, Lepage M, Lecomte R.

Nucl Med Commun. 2014 Jun;35(6):666-76. doi: 10.1097/MNM.0000000000000097.


Kinetic quantitation of cerebral PET-FDG studies without concurrent blood sampling: statistical recovery of the arterial input function.

O'Sullivan F, Kirrane J, Muzi M, O'Sullivan JN, Spence AM, Mankoff DA, Krohn KA.

IEEE Trans Med Imaging. 2010 Mar;29(3):610-24. doi: 10.1109/TMI.2009.2029096. Epub 2009 Aug 25.


A new tool for molecular imaging: the microvolumetric beta blood counter.

Convert L, Morin-Brassard G, Cadorette J, Archambault M, Bentourkia M, Lecomte R.

J Nucl Med. 2007 Jul;48(7):1197-206. Epub 2007 Jun 15.


Image-derived input function in dynamic human PET/CT: methodology and validation with 11C-acetate and 18F-fluorothioheptadecanoic acid in muscle and 18F-fluorodeoxyglucose in brain.

Croteau E, Lavallée E, Labbe SM, Hubert L, Pifferi F, Rousseau JA, Cunnane SC, Carpentier AC, Lecomte R, Bénard F.

Eur J Nucl Med Mol Imaging. 2010 Aug;37(8):1539-50. doi: 10.1007/s00259-010-1443-z. Epub 2010 May 2.


Image-derived input function from the vena cava for 18F-FDG PET studies in rats and mice.

Lanz B, Poitry-Yamate C, Gruetter R.

J Nucl Med. 2014 Aug;55(8):1380-8. doi: 10.2967/jnumed.113.127381. Epub 2014 Jun 9.


Conversion of arterial input functions for dual pharmacokinetic modeling using Gd-DTPA/MRI and 18F-FDG/PET.

Poulin E, Lebel R, Croteau E, Blanchette M, Tremblay L, Lecomte R, Bentourkia M, Lepage M.

Magn Reson Med. 2013 Mar 1;69(3):781-92. doi: 10.1002/mrm.24318. Epub 2012 May 8.


Improved derivation of input function in dynamic mouse [18F]FDG PET using bladder radioactivity kinetics.

Wong KP, Zhang X, Huang SC.

Mol Imaging Biol. 2013 Aug;15(4):486-96. doi: 10.1007/s11307-013-0610-6.


Optimization of the reference region method for dual pharmacokinetic modeling using Gd-DTPA/MRI and (18) F-FDG/PET.

Poulin É, Lebel R, Croteau É, Blanchette M, Tremblay L, Lecomte R, Bentourkia M, Lepage M.

Magn Reson Med. 2015 Feb;73(2):740-8. doi: 10.1002/mrm.25151. Epub 2014 Mar 6.


Arterial input function measurement without blood sampling using a beta-microprobe in rats.

Pain F, Lanièce P, Mastrippolito R, Gervais P, Hantraye P, Besret L.

J Nucl Med. 2004 Sep;45(9):1577-82.


Searching for alternatives to full kinetic analysis in 18F-FDG PET: an extension of the simplified kinetic analysis method.

Hapdey S, Buvat I, Carson JM, Carrasquillo JA, Whatley M, Bacharach SL.

J Nucl Med. 2011 Apr;52(4):634-41. doi: 10.2967/jnumed.110.079079. Epub 2011 Mar 18. Erratum in: J Nucl Med. 2011 May;52(5):838. Carson, Joan M [corrected to Carson, Joann M].


Simplified quantification of small animal [18F]FDG PET studies using a standard arterial input function.

Meyer PT, Circiumaru V, Cardi CA, Thomas DH, Bal H, Acton PD.

Eur J Nucl Med Mol Imaging. 2006 Aug;33(8):948-54. Epub 2006 May 13.


Comparison of 3 methods of automated internal carotid segmentation in human brain PET studies: application to the estimation of arterial input function.

Zanotti-Fregonara P, Maroy R, Comtat C, Jan S, Gaura V, Bar-Hen A, Ribeiro MJ, Trébossen R.

J Nucl Med. 2009 Mar;50(3):461-7. doi: 10.2967/jnumed.108.059642. Epub 2009 Feb 17.


Repeatable noninvasive measurement of mouse myocardial glucose uptake with 18F-FDG: evaluation of tracer kinetics in a type 1 diabetes model.

Thorn SL, deKemp RA, Dumouchel T, Klein R, Renaud JM, Wells RG, Gollob MH, Beanlands RS, DaSilva JN.

J Nucl Med. 2013 Sep;54(9):1637-44. doi: 10.2967/jnumed.112.110114. Epub 2013 Aug 12.


Combining image-derived and venous input functions enables quantification of serotonin-1A receptors with [carbonyl-11C]WAY-100635 independent of arterial sampling.

Hahn A, Nics L, Baldinger P, Ungersböck J, Dolliner P, Frey R, Birkfellner W, Mitterhauser M, Wadsak W, Karanikas G, Kasper S, Lanzenberger R.

Neuroimage. 2012 Aug 1;62(1):199-206. doi: 10.1016/j.neuroimage.2012.04.047. Epub 2012 May 2.


A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: II. In vivo results.

Schabel MC, DiBella EV, Jensen RL, Salzman KL.

Phys Med Biol. 2010 Aug 21;55(16):4807-23. doi: 10.1088/0031-9155/55/16/012. Epub 2010 Aug 3.


Extraction of input function from rat [18F]FDG PET images.

Kudomi N, Bucci M, Oikonen V, Silvennoinen M, Kainulainen H, Nuutila P, Iozzo P, Roivainen A.

Mol Imaging Biol. 2011 Dec;13(6):1241-9. doi: 10.1007/s11307-010-0449-z.


Impact of Image-Derived Input Function and Fit Time Intervals on Patlak Quantification of Myocardial Glucose Uptake in Mice.

Thackeray JT, Bankstahl JP, Bengel FM.

J Nucl Med. 2015 Oct;56(10):1615-21. doi: 10.2967/jnumed.115.160820. Epub 2015 Aug 13.


Noninvasive quantification of cerebral metabolic rate for glucose in rats using (18)F-FDG PET and standard input function.

Hori Y, Ihara N, Teramoto N, Kunimi M, Honda M, Kato K, Hanakawa T.

J Cereb Blood Flow Metab. 2015 Oct;35(10):1664-70. doi: 10.1038/jcbfm.2015.104. Epub 2015 May 13.


Performing Repeated Quantitative Small-Animal PET with an Arterial Input Function Is Routinely Feasible in Rats.

Huang CC, Wu CH, Huang YY, Tzen KY, Chen SF, Tsai ML, Wu HM.

J Nucl Med. 2017 Apr;58(4):611-616. doi: 10.2967/jnumed.116.182402. Epub 2016 Oct 27.


Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice.

Wong KP, Sha W, Zhang X, Huang SC.

J Nucl Med. 2011 May;52(5):800-7. doi: 10.2967/jnumed.110.085092. Epub 2011 Apr 15.

Supplemental Content

Support Center