Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

A tri-gram based feature extraction technique using linear probabilities of position specific scoring matrix for protein fold recognition.

Paliwal KK, Sharma A, Lyons J, Dehzangi A.

IEEE Trans Nanobioscience. 2014 Mar;13(1):44-50. doi: 10.1109/TNB.2013.2296050.

PMID:
24594513
2.

A feature extraction technique using bi-gram probabilities of position specific scoring matrix for protein fold recognition.

Sharma A, Lyons J, Dehzangi A, Paliwal KK.

J Theor Biol. 2013 Mar 7;320:41-6. doi: 10.1016/j.jtbi.2012.12.008. Epub 2012 Dec 13.

PMID:
23246717
3.

Protein fold recognition by alignment of amino acid residues using kernelized dynamic time warping.

Lyons J, Biswas N, Sharma A, Dehzangi A, Paliwal KK.

J Theor Biol. 2014 Aug 7;354:137-45. doi: 10.1016/j.jtbi.2014.03.033. Epub 2014 Mar 31.

PMID:
24698944
4.

Prediction of protein structural class using tri-gram probabilities of position-specific scoring matrix and recursive feature elimination.

Tao P, Liu T, Li X, Chen L.

Amino Acids. 2015 Mar;47(3):461-8. doi: 10.1007/s00726-014-1878-9. Epub 2015 Jan 13.

PMID:
25583603
5.

Improving protein fold recognition using the amalgamation of evolutionary-based and structural based information.

Paliwal KK, Sharma A, Lyons J, Dehzangi A.

BMC Bioinformatics. 2014;15 Suppl 16:S12. doi: 10.1186/1471-2105-15-S16-S12. Epub 2014 Dec 8.

6.

Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing.

Su EC, Chang JM, Cheng CW, Sung TY, Hsu WL.

BMC Bioinformatics. 2012;13 Suppl 17:S13. doi: 10.1186/1471-2105-13-S17-S13. Epub 2012 Dec 13.

7.

Protein fold recognition using HMM-HMM alignment and dynamic programming.

Lyons J, Paliwal KK, Dehzangi A, Heffernan R, Tsunoda T, Sharma A.

J Theor Biol. 2016 Mar 21;393:67-74. doi: 10.1016/j.jtbi.2015.12.018. Epub 2016 Jan 19.

PMID:
26801876
8.

Prediction of subcellular location of apoptosis proteins combining tri-gram encoding based on PSSM and recursive feature elimination.

Liu T, Tao P, Li X, Qin Y, Wang C.

J Theor Biol. 2015 Feb 7;366:8-12. doi: 10.1016/j.jtbi.2014.11.010. Epub 2014 Nov 20.

PMID:
25463695
9.

A protein fold classifier formed by fusing different modes of pseudo amino acid composition via PSSM.

Kavousi K, Moshiri B, Sadeghi M, Araabi BN, Moosavi-Movahedi AA.

Comput Biol Chem. 2011 Feb;35(1):1-9. doi: 10.1016/j.compbiolchem.2010.12.001. Epub 2010 Dec 17.

PMID:
21216672
10.

A hierarchical approach to protein fold prediction.

Mohammad TA, Nagarajaram HA.

J Integr Bioinform. 2011 Oct 19;8(1):185. doi: 10.2390/biecoll-jib-2011-185.

PMID:
22008449
11.

Enhanced Protein Fold Prediction Method Through a Novel Feature Extraction Technique.

Wei L, Liao M, Gao X, Zou Q.

IEEE Trans Nanobioscience. 2015 Sep;14(6):649-59. doi: 10.1109/TNB.2015.2450233.

PMID:
26335556
12.

A Segmentation-Based Method to Extract Structural and Evolutionary Features for Protein Fold Recognition.

Dehzangi A, Paliwal K, Lyons J, Sharma A, Sattar A.

IEEE/ACM Trans Comput Biol Bioinform. 2014 May-Jun;11(3):510-9. doi: 10.1109/TCBB.2013.2296317.

PMID:
26356019
13.
14.

Improved method for predicting protein fold patterns with ensemble classifiers.

Chen W, Liu X, Huang Y, Jiang Y, Zou Q, Lin C.

Genet Mol Res. 2012 Jan 27;11(1):174-81. doi: 10.4238/2012.January.27.4.

16.

Probabilistic expression of spatially varied amino acid dimers into general form of Chou׳s pseudo amino acid composition for protein fold recognition.

Saini H, Raicar G, Sharma A, Lal S, Dehzangi A, Lyons J, Paliwal KK, Imoto S, Miyano S.

J Theor Biol. 2015 Sep 7;380:291-8. doi: 10.1016/j.jtbi.2015.05.030. Epub 2015 Jun 12.

PMID:
26079221
17.

Using distances between Top-n-gram and residue pairs for protein remote homology detection.

Liu B, Xu J, Zou Q, Xu R, Wang X, Chen Q.

BMC Bioinformatics. 2014;15 Suppl 2:S3. doi: 10.1186/1471-2105-15-S2-S3. Epub 2014 Jan 24.

18.

A discriminative method for protein remote homology detection and fold recognition combining Top-n-grams and latent semantic analysis.

Liu B, Wang X, Lin L, Dong Q, Wang X.

BMC Bioinformatics. 2008 Dec 1;9:510. doi: 10.1186/1471-2105-9-510.

19.
20.

Enhanced protein fold recognition through a novel data integration approach.

Ying Y, Huang K, Campbell C.

BMC Bioinformatics. 2009 Aug 26;10:267. doi: 10.1186/1471-2105-10-267.

Supplemental Content

Support Center