Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 159

1.

Controlling precise magnetic field configuration around electron cyclotron resonance zone for enhancing plasma parameters and beam current.

Yano K, Kurisu Y, Nozaki D, Kimura D, Imai Y, Kumakura S, Sato F, Kato Y, Iida T.

Rev Sci Instrum. 2014 Feb;85(2):02A937. doi: 10.1063/1.4827424.

PMID:
24593516
2.

The electron cyclotron resonance ion source with arc-shaped coils concept (invited).

Koivisto H, Suominen P, Tarvainen O, Spädtke P.

Rev Sci Instrum. 2012 Feb;83(2):02A312. doi: 10.1063/1.3662474.

PMID:
22380159
3.

Formation of multi-charged ion beams by focusing effect of mid-electrode on electron cyclotron resonance ion source.

Imai Y, Kimura D, Kurisu Y, Nozaki D, Yano K, Kumakura S, Sato F, Kato Y, Iida T.

Rev Sci Instrum. 2014 Feb;85(2):02A955. doi: 10.1063/1.4861401.

PMID:
24593534
4.

Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy.

Inoue T, Hattori T, Sugimoto S, Sasai K.

Rev Sci Instrum. 2014 Feb;85(2):02A958. doi: 10.1063/1.4862208.

PMID:
24593537
5.

Characterization of plasma parameters, first beam results, and status of electron cyclotron resonance source.

Jain SK, Jain A, Hannurkar PR, Kotaiah S.

Rev Sci Instrum. 2007 May;78(5):053301.

PMID:
17552812
6.

Design of a compact, permanent magnet electron cyclotron resonance ion source for proton and H2(+) beam production.

Jia X, Zhang T, Luo S, Wang C, Zheng X, Yin Z, Zhong J, Wu L, Qin J.

Rev Sci Instrum. 2010 Feb;81(2):02A321. doi: 10.1063/1.3267838.

PMID:
20192342
7.

Transverse distribution of beam current oscillations of a 14 GHz electron cyclotron resonance ion source.

Tarvainen O, Toivanen V, Komppula J, Kalvas T, Koivisto H.

Rev Sci Instrum. 2014 Feb;85(2):02A909. doi: 10.1063/1.4826539.

PMID:
24593488
8.

Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma.

Kato Y, Yano K, Nishiokada T, Nagaya T, Kimura D, Kumakura S, Imai Y, Hagino S, Otsuka T, Sato F.

Rev Sci Instrum. 2016 Feb;87(2):02A710. doi: 10.1063/1.4933031.

PMID:
26931928
9.

36-segmented high magnetic field hexapole magnets for electron cyclotron resonance ion source.

Sun LT, Zhao HW, Zhang ZM, Wang H, Ma BH, Zhang XZ, Li XX, Feng YC, Li JY, Guo XH, Shang Y, Zhao HY.

Rev Sci Instrum. 2007 May;78(5):053302.

PMID:
17552813
10.

Electron energy distribution function by using probe method in electron cyclotron resonance multicharged ion source.

Kumakura S, Kurisu Y, Kimura D, Yano K, Imai Y, Sato F, Kato Y, Iida T.

Rev Sci Instrum. 2014 Feb;85(2):02A925. doi: 10.1063/1.4829738.

PMID:
24593504
11.

First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited).

Nakagawa T, Higurashi Y, Ohnishi J, Aihara T, Tamura M, Uchiyama A, Okuno H, Kusaka K, Kidera M, Ikezawa E, Fujimaki M, Sato Y, Watanabe Y, Komiyama M, Kase M, Goto A, Kamigaito O, Yano Y.

Rev Sci Instrum. 2010 Feb;81(2):02A320. doi: 10.1063/1.3259232.

PMID:
20192341
12.

Bio-Nano ECRIS: an electron cyclotron resonance ion source for new materials production.

Uchida T, Minezaki H, Tanaka K, Muramatsu M, Asaji T, Kato Y, Kitagawa A, Biri S, Yoshida Y.

Rev Sci Instrum. 2010 Feb;81(2):02A306. doi: 10.1063/1.3258027.

PMID:
20192327
13.

Status of the Bio-Nano electron cyclotron resonance ion source at Toyo University.

Uchida T, Minezaki H, Ishihara S, Muramatsu M, Rácz R, Asaji T, Kitagawa A, Kato Y, Biri S, Drentje AG, Yoshida Y.

Rev Sci Instrum. 2014 Feb;85(2):02C317. doi: 10.1063/1.4862212.

PMID:
24593654
14.

Measurements and analysis of bremsstrahlung x-ray spectrum obtained in NANOGAN electron cyclotron resonance ion source.

Baskaran R, Selvakumaran TS, Rodrigues G, Kanjilal D, Roy A.

Rev Sci Instrum. 2008 Feb;79(2 Pt 2):02A324. doi: 10.1063/1.2816785.

PMID:
18315114
15.

Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source.

Kurisu Y, Kiriyama R, Takenaka T, Nozaki D, Sato F, Kato Y, Iida T.

Rev Sci Instrum. 2012 Feb;83(2):02A310. doi: 10.1063/1.3662016.

PMID:
22380157
16.

Hydrogen negative ion production in a 14 GHz electron cyclotron resonance compact ion source with a cone-shaped magnetic filter.

Ichikawa T, Kasuya T, Kenmotsu T, Maeno S, Nishiura M, Shimozuma T, Yamaoka H, Wada M.

Rev Sci Instrum. 2014 Feb;85(2):02B132. doi: 10.1063/1.4860396.

PMID:
24593572
17.

Plasma spectroscopy of metal ions for hyper-electron cyclotron resonance ion source.

Muto H, Ohshiro Y, Yamaka S, Watanabe S, Oyaizu M, Kubono S, Yamaguchi H, Kase M, Hattori T, Shimoura S.

Rev Sci Instrum. 2014 Feb;85(2):02A905. doi: 10.1063/1.4825160.

PMID:
24593484
18.

Ion beam capture and charge breeding in electron cyclotron resonance ion source plasmas.

Kim JS, Zhao L, Cluggish BP, Pardo R.

Rev Sci Instrum. 2007 Oct;78(10):103503.

PMID:
17979415
19.

Producing multicharged fullerene ion beam extracted from the second stage of tandem-type ECRIS.

Nagaya T, Nishiokada T, Hagino S, Uchida T, Muramatsu M, Otsuka T, Sato F, Kitagawa A, Kato Y, Yoshida Y.

Rev Sci Instrum. 2016 Feb;87(2):02A723. doi: 10.1063/1.4934644.

PMID:
26931941
20.

Effects of fundamental and second harmonic electron cyclotron resonances on ECRIS.

Kato Y, Satani T, Asaji T, Sato F, Iida T.

Rev Sci Instrum. 2008 Feb;79(2 Pt 2):02A323. doi: 10.1063/1.2816759.

PMID:
18315113

Supplemental Content

Support Center