Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

Combination of dendrimer-nanovector-mediated small interfering RNA delivery to target Akt with the clinical anticancer drug paclitaxel for effective and potent anticancer activity in treating ovarian cancer.

Kala S, Mak AS, Liu X, Posocco P, Pricl S, Peng L, Wong AS.

J Med Chem. 2014 Mar 27;57(6):2634-42. doi: 10.1021/jm401907z. Epub 2014 Mar 18.

PMID:
24592939
2.

Targeted nanomedicine for suppression of CD44 and simultaneous cell death induction in ovarian cancer: an optimal delivery of siRNA and anticancer drug.

Shah V, Taratula O, Garbuzenko OB, Taratula OR, Rodriguez-Rodriguez L, Minko T.

Clin Cancer Res. 2013 Nov 15;19(22):6193-204. doi: 10.1158/1078-0432.CCR-13-1536. Epub 2013 Sep 13.

3.

Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors.

Wang J, Lu Z, Wang J, Cui M, Yeung BZ, Cole DJ, Wientjes MG, Au JL.

J Control Release. 2015 Oct 28;216:103-10. doi: 10.1016/j.jconrel.2015.08.012. Epub 2015 Aug 10.

4.

Arginine-terminated generation 4 PAMAM dendrimer as an effective nanovector for functional siRNA delivery in vitro and in vivo.

Liu C, Liu X, Rocchi P, Qu F, Iovanna JL, Peng L.

Bioconjug Chem. 2014 Mar 19;25(3):521-32. doi: 10.1021/bc4005156. Epub 2014 Feb 11.

PMID:
24494983
5.

Multifunctional Polymeric Micelles Co-loaded with Anti-Survivin siRNA and Paclitaxel Overcome Drug Resistance in an Animal Model of Ovarian Cancer.

Salzano G, Navarro G, Trivedi MS, De Rosa G, Torchilin VP.

Mol Cancer Ther. 2015 Apr;14(4):1075-84. doi: 10.1158/1535-7163.MCT-14-0556. Epub 2015 Feb 5.

6.

Targeted inhibition of phosphatidyl inositol-3-kinase p110β, but not p110α, enhances apoptosis and sensitivity to paclitaxel in chemoresistant ovarian cancers.

Jeong JY, Kim KS, Moon JS, Song JA, Choi SH, Kim KI, Kim TH, An HJ.

Apoptosis. 2013 Apr;18(4):509-20. doi: 10.1007/s10495-013-0807-9.

7.

Efficient delivery of sticky siRNA and potent gene silencing in a prostate cancer model using a generation 5 triethanolamine-core PAMAM dendrimer.

Liu X, Liu C, Laurini E, Posocco P, Pricl S, Qu F, Rocchi P, Peng L.

Mol Pharm. 2012 Mar 5;9(3):470-81. doi: 10.1021/mp2006104. Epub 2012 Jan 20.

PMID:
22208617
8.

The role of p27(Kip1) in dasatinib-enhanced paclitaxel cytotoxicity in human ovarian cancer cells.

Le XF, Mao W, He G, Claret FX, Xia W, Ahmed AA, Hung MC, Siddik ZH, Bast RC Jr.

J Natl Cancer Inst. 2011 Sep 21;103(18):1403-22. doi: 10.1093/jnci/djr280. Epub 2011 Aug 2.

9.

Nanoformulation of siRNA silencing Bcl-2 gene and its implication in cancer therapy.

Jagani HV, Josyula VR, Hariharapura RC, Palanimuthu VR, Gang SS.

Arzneimittelforschung. 2011;61(10):577-86. doi: 10.1055/s-0031-1300556.

PMID:
22164966
10.

The phosphatidylinositol 3-kinase/AKT signal transduction pathway plays a critical role in the expression of p21WAF1/CIP1/SDI1 induced by cisplatin and paclitaxel.

Mitsuuchi Y, Johnson SW, Selvakumaran M, Williams SJ, Hamilton TC, Testa JR.

Cancer Res. 2000 Oct 1;60(19):5390-4.

11.

Overexpression of SOX2 is involved in paclitaxel resistance of ovarian cancer via the PI3K/Akt pathway.

Li Y, Chen K, Li L, Li R, Zhang J, Ren W.

Tumour Biol. 2015 Dec;36(12):9823-8. doi: 10.1007/s13277-015-3561-5. Epub 2015 Jul 11.

PMID:
26159849
12.

Tectorigenin sensitizes paclitaxel-resistant human ovarian cancer cells through downregulation of the Akt and NFκB pathway.

Yang YI, Lee KT, Park HJ, Kim TJ, Choi YS, Shih IeM, Choi JH.

Carcinogenesis. 2012 Dec;33(12):2488-98. doi: 10.1093/carcin/bgs302. Epub 2012 Oct 1.

PMID:
23027625
13.

Lipid-dendrimer hybrid nanosystem as a novel delivery system for paclitaxel to treat ovarian cancer.

Liu Y, Ng Y, Toh MR, Chiu GN.

J Control Release. 2015 Dec 28;220(Pt A):438-46. doi: 10.1016/j.jconrel.2015.11.004. Epub 2015 Nov 7.

PMID:
26551345
14.

An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo.

Yu T, Liu X, Bolcato-Bellemin AL, Wang Y, Liu C, Erbacher P, Qu F, Rocchi P, Behr JP, Peng L.

Angew Chem Int Ed Engl. 2012 Aug 20;51(34):8478-84. doi: 10.1002/anie.201203920. Epub 2012 Jul 24.

PMID:
22829421
16.

Inhibition of inhibitor of nuclear factor-kappaB phosphorylation increases the efficacy of paclitaxel in in vitro and in vivo ovarian cancer models.

Mabuchi S, Ohmichi M, Nishio Y, Hayasaka T, Kimura A, Ohta T, Kawagoe J, Takahashi K, Yada-Hashimoto N, Seino-Noda H, Sakata M, Motoyama T, Kurachi H, Testa JR, Tasaka K, Murata Y.

Clin Cancer Res. 2004 Nov 15;10(22):7645-54.

17.

Silencing dishevelled-1 sensitizes paclitaxel-resistant human ovarian cancer cells via AKT/GSK-3β/β-catenin signalling.

Zhang K, Song H, Yang P, Dai X, Li Y, Wang L, Du J, Pan K, Zhang T.

Cell Prolif. 2015 Apr;48(2):249-58. doi: 10.1111/cpr.12161. Epub 2015 Jan 21.

PMID:
25643607
18.

A combination of paclitaxel and siRNA-mediated silencing of Stathmin inhibits growth and promotes apoptosis of nasopharyngeal carcinoma cells.

Wu Y, Tang M, Wu Y, Weng X, Yang L, Xu W, Yi W, Gao J, Bode AM, Dong Z, Cao Y.

Cell Oncol (Dordr). 2014 Feb;37(1):53-67. doi: 10.1007/s13402-013-0163-3. Epub 2013 Dec 5.

PMID:
24306928
19.

Cell-penetrating peptide mimicking polymer-based combined delivery of paclitaxel and siRNA for enhanced tumor growth suppression.

Jang YL, Yun UJ, Lee MS, Kim MG, Son S, Lee K, Chae SY, Lim DW, Kim HT, Kim SH, Jeong JH.

Int J Pharm. 2012 Sep 15;434(1-2):488-93. doi: 10.1016/j.ijpharm.2012.04.083. Epub 2012 May 14.

PMID:
22613208
20.

Silencing Wnt2B by siRNA interference inhibits metastasis and enhances chemotherapy sensitivity in ovarian cancer.

Wang H, Fan L, Xia X, Rao Y, Ma Q, Yang J, Lu Y, Wang C, Ma D, Huang X.

Int J Gynecol Cancer. 2012 Jun;22(5):755-61. doi: 10.1097/IGC.0b013e3182540284.

PMID:
22635028

Supplemental Content

Support Center