Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 143

1.

Mechanism of antibacterial activity of copper nanoparticles.

Chatterjee AK, Chakraborty R, Basu T.

Nanotechnology. 2014 Apr 4;25(13):135101. doi: 10.1088/0957-4484/25/13/135101. Epub 2014 Feb 28.

PMID:
24584282
2.

Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA.

Giannousi K, Lafazanis K, Arvanitidis J, Pantazaki A, Dendrinou-Samara C.

J Inorg Biochem. 2014 Apr;133:24-32. doi: 10.1016/j.jinorgbio.2013.12.009. Epub 2014 Jan 3.

PMID:
24441110
3.

Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications.

Mallick S, Sharma S, Banerjee M, Ghosh SS, Chattopadhyay A, Paul A.

ACS Appl Mater Interfaces. 2012 Mar;4(3):1313-23. doi: 10.1021/am201586w. Epub 2012 Feb 16.

PMID:
22301575
4.

A simple, fast and cost-effective method of synthesis of cupric oxide nanoparticle with promising antibacterial potency: Unraveling the biological and chemical modes of action.

Chakraborty R, Sarkar RK, Chatterjee AK, Manju U, Chattopadhyay AP, Basu T.

Biochim Biophys Acta. 2015 Apr;1850(4):845-56. doi: 10.1016/j.bbagen.2015.01.015. Epub 2015 Jan 29.

PMID:
25637716
5.

A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage.

Pramanik A, Laha D, Bhattacharya D, Pramanik P, Karmakar P.

Colloids Surf B Biointerfaces. 2012 Aug 1;96:50-5. doi: 10.1016/j.colsurfb.2012.03.021. Epub 2012 Apr 5.

PMID:
22521682
6.

Synthesis of phenolic precursor-based porous carbon beads in situ dispersed with copper-silver bimetal nanoparticles for antibacterial applications.

Khare P, Sharma A, Verma N.

J Colloid Interface Sci. 2014 Mar 15;418:216-24. doi: 10.1016/j.jcis.2013.12.026. Epub 2013 Dec 19.

PMID:
24461838
7.

Synthesis and characterization of bovine serum albumin-copper nanocomposites for antibacterial applications.

Rastogi L, Arunachalam J.

Colloids Surf B Biointerfaces. 2013 Aug 1;108:134-41. doi: 10.1016/j.colsurfb.2013.02.031. Epub 2013 Mar 7.

PMID:
23531744
8.

Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation.

Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AV.

Colloids Surf B Biointerfaces. 2012 Jun 1;94:143-50. doi: 10.1016/j.colsurfb.2012.01.046. Epub 2012 Feb 7.

PMID:
22348987
9.

Antibacterial effect of chronic exposure of low concentration ZnO nanoparticles on E. coli.

Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AV.

J Environ Sci Health A Tox Hazard Subst Environ Eng. 2013;48(8):871-8. doi: 10.1080/10934529.2013.761489.

PMID:
23485236
10.

A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli.

Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R, Basu T.

Nanotechnology. 2012 Feb 1;23(8):085103. doi: 10.1088/0957-4484/23/8/085103.

PMID:
22293320
11.

Structural and functional effects of Cu metalloprotein-driven silver nanoparticle dissolution.

Martinolich AJ, Park G, Nakamoto MY, Gate RE, Wheeler KE.

Environ Sci Technol. 2012 Jun 5;46(11):6355-62. doi: 10.1021/es300901h. Epub 2012 May 18.

PMID:
22563882
12.

Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress.

Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E.

Small. 2012 Nov 5;8(21):3326-37. doi: 10.1002/smll.201200772. Epub 2012 Aug 13.

PMID:
22888058
13.

Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array.

Li F, Lei C, Shen Q, Li L, Wang M, Guo M, Huang Y, Nie Z, Yao S.

Nanoscale. 2013 Jan 21;5(2):653-62. doi: 10.1039/c2nr32156d. Epub 2012 Dec 5.

PMID:
23223666
15.

The synergetic antibacterial activity of Ag islands on ZnO (Ag/ZnO) heterostructure nanoparticles and its mode of action.

Zhang Y, Gao X, Zhi L, Liu X, Jiang W, Sun Y, Yang J.

J Inorg Biochem. 2014 Jan;130:74-83. doi: 10.1016/j.jinorgbio.2013.10.004. Epub 2013 Oct 11.

PMID:
24176922
16.

Hydroxycinnamic acids as DNA-cleaving agents in the presence of Cu(II) ions: mechanism, structure-activity relationship, and biological implications.

Fan GJ, Jin XL, Qian YP, Wang Q, Yang RT, Dai F, Tang JJ, Shang YJ, Cheng LX, Yang J, Zhou B.

Chemistry. 2009 Nov 23;15(46):12889-99. doi: 10.1002/chem.200901627.

PMID:
19847825
17.

Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process.

Karlsson HL, Cronholm P, Hedberg Y, Tornberg M, De Battice L, Svedhem S, Wallinder IO.

Toxicology. 2013 Nov 8;313(1):59-69. doi: 10.1016/j.tox.2013.07.012. Epub 2013 Jul 26.

18.

Electron storage mediated dark antibacterial action of bound silver nanoparticles: smaller is not always better.

Cao H, Qiao Y, Liu X, Lu T, Cui T, Meng F, Chu PK.

Acta Biomater. 2013 Feb;9(2):5100-10. doi: 10.1016/j.actbio.2012.10.017. Epub 2012 Oct 17.

PMID:
23085265
19.

The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity.

Hedberg J, Karlsson HL, Hedberg Y, Blomberg E, Odnevall Wallinder I.

Colloids Surf B Biointerfaces. 2016 May 1;141:291-300. doi: 10.1016/j.colsurfb.2016.01.052. Epub 2016 Feb 4.

20.

Toward a Molecular Understanding of the Antibacterial Mechanism of Copper-Bearing Titanium Alloys against Staphylococcus aureus.

Li M, Ma Z, Zhu Y, Xia H, Yao M, Chu X, Wang X, Yang K, Yang M, Zhang Y, Mao C.

Adv Healthc Mater. 2016 Mar 9;5(5):557-66. doi: 10.1002/adhm.201500712. Epub 2015 Dec 22.

Supplemental Content

Support Center