Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 144

1.

Changes in hemodynamic signals accompanying motor imagery and motor execution of swallowing: a near-infrared spectroscopy study.

Kober SE, Wood G.

Neuroimage. 2014 Jun;93 Pt 1:1-10. doi: 10.1016/j.neuroimage.2014.02.019. Epub 2014 Feb 25.

PMID:
24576696
2.

Hemodynamic Signal Changes Accompanying Execution and Imagery of Swallowing in Patients with Dysphagia: A Multiple Single-Case Near-Infrared Spectroscopy Study.

Kober SE, Bauernfeind G, Woller C, Sampl M, Grieshofer P, Neuper C, Wood G.

Front Neurol. 2015 Jul 6;6:151. doi: 10.3389/fneur.2015.00151. eCollection 2015.

3.

Voluntary Modulation of Hemodynamic Responses in Swallowing Related Motor Areas: A Near-Infrared Spectroscopy-Based Neurofeedback Study.

Kober SE, Gressenberger B, Kurzmann J, Neuper C, Wood G.

PLoS One. 2015 Nov 17;10(11):e0143314. doi: 10.1371/journal.pone.0143314. eCollection 2015.

4.

Spatio-temporal differences in brain oxygenation between movement execution and imagery: a multichannel near-infrared spectroscopy study.

Wriessnegger SC, Kurzmann J, Neuper C.

Int J Psychophysiol. 2008 Jan;67(1):54-63. Epub 2007 Oct 17.

PMID:
18006099
5.

Extension of mental preparation positively affects motor imagery as compared to motor execution: a functional near-infrared spectroscopy study.

Holper L, Scholkmann F, Shalóm DE, Wolf M.

Cortex. 2012 May;48(5):593-603. doi: 10.1016/j.cortex.2011.02.001. Epub 2011 Mar 5.

PMID:
21377666
6.

Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy.

Iso N, Moriuchi T, Sagari A, Kitajima E, Iso F, Tanaka K, Kikuchi Y, Tabira T, Higashi T.

Front Physiol. 2016 Jan 11;6:416. doi: 10.3389/fphys.2015.00416. eCollection 2015.

7.

Motor imagery in response to fake feedback measured by functional near-infrared spectroscopy.

Holper L, Wolf M.

Neuroimage. 2010 Mar;50(1):190-7. doi: 10.1016/j.neuroimage.2009.12.055. Epub 2009 Dec 21.

PMID:
20026278
8.

Understanding inverse oxygenation responses during motor imagery: a functional near-infrared spectroscopy study.

Holper L, Shalóm DE, Wolf M, Sigman M.

Eur J Neurosci. 2011 Jun;33(12):2318-28. doi: 10.1111/j.1460-9568.2011.07720.x. Epub 2011 Jun 2.

PMID:
21631608
9.

Force related hemodynamic responses during execution and imagery of a hand grip task: A functional near infrared spectroscopy study.

Wriessnegger SC, Kirchmeyr D, Bauernfeind G, Müller-Putz GR.

Brain Cogn. 2017 Oct;117:108-116. doi: 10.1016/j.bandc.2017.06.010. Epub 2017 Jun 30.

PMID:
28673464
10.

Neural and cortical analysis of swallowing and detection of motor imagery of swallow for dysphagia rehabilitation-A review.

Yang H, Ang KK, Wang C, Phua KS, Guan C.

Prog Brain Res. 2016;228:185-219. doi: 10.1016/bs.pbr.2016.03.014. Epub 2016 Jun 1. Review.

PMID:
27590970
11.

Decrease in cortical activation during learning of a multi-joint discrete motor task.

Ikegami T, Taga G.

Exp Brain Res. 2008 Nov;191(2):221-36. doi: 10.1007/s00221-008-1518-2. Epub 2008 Aug 5.

PMID:
18679662
12.

Motor imagery-based brain activity parallels that of motor execution: evidence from magnetic source imaging of cortical oscillations.

Kraeutner S, Gionfriddo A, Bardouille T, Boe S.

Brain Res. 2014 Nov 7;1588:81-91. doi: 10.1016/j.brainres.2014.09.001. Epub 2014 Sep 22.

PMID:
25251592
13.

Motor execution and motor imagery: a comparison of functional connectivity patterns based on graph theory.

Xu L, Zhang H, Hui M, Long Z, Jin Z, Liu Y, Yao L.

Neuroscience. 2014 Mar 7;261:184-94. doi: 10.1016/j.neuroscience.2013.12.005. Epub 2013 Dec 13.

PMID:
24333970
14.

Effects of motor imagery on intermanual transfer: a near-infrared spectroscopy and behavioural study.

Amemiya K, Ishizu T, Ayabe T, Kojima S.

Brain Res. 2010 Jul 9;1343:93-103. doi: 10.1016/j.brainres.2010.04.048. Epub 2010 Apr 25.

PMID:
20423702
15.

Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery.

Sauvage C, Jissendi P, Seignan S, Manto M, Habas C.

J Neuroradiol. 2013 Oct;40(4):267-80. doi: 10.1016/j.neurad.2012.10.001. Epub 2013 Feb 21.

16.

Multimodal functional imaging of motor imagery using a novel paradigm.

Burianová H, Marstaller L, Sowman P, Tesan G, Rich AN, Williams M, Savage G, Johnson BW.

Neuroimage. 2013 May 1;71:50-8. doi: 10.1016/j.neuroimage.2013.01.001. Epub 2013 Jan 12.

17.

Trial-to-trial variability differentiates motor imagery during observation between low versus high responders: a functional near-infrared spectroscopy study.

Holper L, Kobashi N, Kiper D, Scholkmann F, Wolf M, Eng K.

Behav Brain Res. 2012 Apr 1;229(1):29-40. doi: 10.1016/j.bbr.2011.12.038. Epub 2012 Jan 2.

PMID:
22227507
18.
19.

Differences in hemodynamic activations between motor imagery and upper limb FES with NIRS.

Schürholz M, Rana M, Robinson N, Ramos-Murguialday A, Cho W, Rohm M, Rupp R, Birbaumer N, Sitaram R.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4728-31. doi: 10.1109/EMBC.2012.6347023.

PMID:
23366984
20.

Near-infrared spectroscopy based neurofeedback training increases specific motor imagery related cortical activation compared to sham feedback.

Kober SE, Wood G, Kurzmann J, Friedrich EV, Stangl M, Wippel T, Väljamäe A, Neuper C.

Biol Psychol. 2014 Jan;95:21-30. doi: 10.1016/j.biopsycho.2013.05.005. Epub 2013 May 25.

PMID:
23714227

Supplemental Content

Support Center