Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Genome-wide association mapping of acute lung injury in neonatal inbred mice.

Nichols JL, Gladwell W, Verhein KC, Cho HY, Wess J, Suzuki O, Wiltshire T, Kleeberger SR.

FASEB J. 2014 Jun;28(6):2538-50. doi: 10.1096/fj.13-247221. Epub 2014 Feb 26.

2.

The genome-wide transcriptional response to neonatal hyperoxia identifies Ahr as a key regulator.

Bhattacharya S, Zhou Z, Yee M, Chu CY, Lopez AM, Lunger VA, Solleti SK, Resseguie E, Buczynski B, Mariani TJ, O'Reilly MA.

Am J Physiol Lung Cell Mol Physiol. 2014 Oct 1;307(7):L516-23. doi: 10.1152/ajplung.00200.2014. Epub 2014 Aug 22.

3.

CD11b(+) Mononuclear Cells Mitigate Hyperoxia-Induced Lung Injury in Neonatal Mice.

Eldredge LC, Treuting PM, Manicone AM, Ziegler SF, Parks WC, McGuire JK.

Am J Respir Cell Mol Biol. 2016 Feb;54(2):273-83. doi: 10.1165/rcmb.2014-0395OC.

4.

[Anti-inflammatory effects of erythropoietin on hyperoxia-induced bronchopulmonary dysplasia in newborn rats].

Wang XL, Xue XD.

Zhonghua Er Ke Za Zhi. 2009 Jun;47(6):446-51. Chinese.

PMID:
19951473
5.

Targeted deletion of nrf2 impairs lung development and oxidant injury in neonatal mice.

Cho HY, van Houten B, Wang X, Miller-DeGraff L, Fostel J, Gladwell W, Perrow L, Panduri V, Kobzik L, Yamamoto M, Bell DA, Kleeberger SR.

Antioxid Redox Signal. 2012 Oct 15;17(8):1066-82. doi: 10.1089/ars.2011.4288. Epub 2012 Apr 18.

6.

Cathepsin S deficiency confers protection from neonatal hyperoxia-induced lung injury.

Hirakawa H, Pierce RA, Bingol-Karakoc G, Karaaslan C, Weng M, Shi GP, Saad A, Weber E, Mariani TJ, Starcher B, Shapiro SD, Cataltepe S.

Am J Respir Crit Care Med. 2007 Oct 15;176(8):778-85. Epub 2007 Aug 2.

7.

Linkage analysis of susceptibility to hyperoxia. Nrf2 is a candidate gene.

Cho HY, Jedlicka AE, Reddy SP, Zhang LY, Kensler TW, Kleeberger SR.

Am J Respir Cell Mol Biol. 2002 Jan;26(1):42-51.

PMID:
11751202
8.

Sphingosine kinase 1 deficiency confers protection against hyperoxia-induced bronchopulmonary dysplasia in a murine model: role of S1P signaling and Nox proteins.

Harijith A, Pendyala S, Reddy NM, Bai T, Usatyuk PV, Berdyshev E, Gorshkova I, Huang LS, Mohan V, Garzon S, Kanteti P, Reddy SP, Raj JU, Natarajan V.

Am J Pathol. 2013 Oct;183(4):1169-82. doi: 10.1016/j.ajpath.2013.06.018. Epub 2013 Aug 8.

9.

Differential expression of long non-coding RNAs in hyperoxia-induced bronchopulmonary dysplasia.

Bao TP, Wu R, Cheng HP, Cui XW, Tian ZF.

Cell Biochem Funct. 2016 Jul;34(5):299-309. doi: 10.1002/cbf.3190. Epub 2016 May 3.

PMID:
27137150
10.

Cardiac physiologic and genetic predictors of hyperoxia-induced acute lung injury in mice.

Howden R, Cho HY, Miller-DeGraff L, Walker C, Clark JA, Myers PH, Rouse DC, Kleeberger SR.

Am J Respir Cell Mol Biol. 2012 Apr;46(4):470-8. doi: 10.1165/rcmb.2011-0204OC. Epub 2011 Nov 3.

11.

Does lack of glutathione peroxidase 1 gene expression exacerbate lung injury induced by neonatal hyperoxia in mice?

Bouch S, O'Reilly M, de Haan JB, Harding R, Sozo F.

Am J Physiol Lung Cell Mol Physiol. 2017 Jul 1;313(1):L115-L125. doi: 10.1152/ajplung.00039.2016. Epub 2017 Apr 6.

PMID:
28385808
12.

Identification of SPOCK2 as a susceptibility gene for bronchopulmonary dysplasia.

Hadchouel A, Durrmeyer X, Bouzigon E, Incitti R, Huusko J, Jarreau PH, Lenclen R, Demenais F, Franco-Montoya ML, Layouni I, Patkai J, Bourbon J, Hallman M, Danan C, Delacourt C.

Am J Respir Crit Care Med. 2011 Nov 15;184(10):1164-70. doi: 10.1164/rccm.201103-0548OC. Epub 2011 Aug 11.

13.

Sex-specific differences in hyperoxic lung injury in mice: implications for acute and chronic lung disease in humans.

Lingappan K, Jiang W, Wang L, Couroucli XI, Barrios R, Moorthy B.

Toxicol Appl Pharmacol. 2013 Oct 15;272(2):281-90. doi: 10.1016/j.taap.2013.06.007. Epub 2013 Jun 21.

14.

Association of Nrf2 polymorphism haplotypes with acute lung injury phenotypes in inbred strains of mice.

Cho HY, Jedlicka AE, Gladwell W, Marzec J, McCaw ZR, Bienstock RJ, Kleeberger SR.

Antioxid Redox Signal. 2015 Feb 1;22(4):325-38. doi: 10.1089/ars.2014.5942. Epub 2014 Nov 12.

15.

Hypoxic stress exacerbates hyperoxia-induced lung injury in a neonatal mouse model of bronchopulmonary dysplasia.

Ratner V, Slinko S, Utkina-Sosunova I, Starkov A, Polin RA, Ten VS.

Neonatology. 2009;95(4):299-305. doi: 10.1159/000178798. Epub 2008 Dec 4.

16.

The Effect of Continuous Positive Airway Pressure in a Mouse Model of Hyperoxic Neonatal Lung Injury.

Reyburn B, Di Fiore JM, Raffay T, Martin RJ, Prakash YS, Jafri A, MacFarlane PM.

Neonatology. 2016;109(1):6-13. doi: 10.1159/000438818. Epub 2015 Sep 23.

17.

Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia.

Popova AP, Bentley JK, Cui TX, Richardson MN, Linn MJ, Lei J, Chen Q, Goldsmith AM, Pryhuber GS, Hershenson MB.

Am J Physiol Lung Cell Mol Physiol. 2014 Aug 1;307(3):L231-9. doi: 10.1152/ajplung.00342.2013. Epub 2014 Jun 6.

18.

Foxm1 regulates resolution of hyperoxic lung injury in newborns.

Xia H, Ren X, Bolte CS, Ustiyan V, Zhang Y, Shah TA, Kalin TV, Whitsett JA, Kalinichenko VV.

Am J Respir Cell Mol Biol. 2015 May;52(5):611-21. doi: 10.1165/rcmb.2014-0091OC.

19.

Association between oxidative DNA damage and the expression of 8-oxoguanine DNA glycosylase 1 in lung epithelial cells of neonatal rats exposed to hyperoxia.

Jin L, Yang H, Fu J, Xue X, Yao L, Qiao L.

Mol Med Rep. 2015 Jun;11(6):4079-86. doi: 10.3892/mmr.2015.3339. Epub 2015 Feb 12.

20.

Role of microRNA-150 and glycoprotein nonmetastatic melanoma protein B in angiogenesis during hyperoxia-induced neonatal lung injury.

Narasaraju T, Shukla D, More S, Huang C, Zhang L, Xiao X, Liu L.

Am J Respir Cell Mol Biol. 2015 Feb;52(2):253-61. doi: 10.1165/rcmb.2013-0021OC.

Supplemental Content

Support Center