Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 288

1.

Tonic inhibition by G protein-coupled receptor kinase 2 of Akt/endothelial nitric-oxide synthase signaling in human vascular endothelial cells under conditions of hyperglycemia with high insulin levels.

Taguchi K, Sakata K, Ohashi W, Imaizumi T, Imura J, Hattori Y.

J Pharmacol Exp Ther. 2014 May;349(2):199-208. doi: 10.1124/jpet.113.211854. Epub 2014 Feb 25.

2.

Inhibitor of G protein-coupled receptor kinase 2 normalizes vascular endothelial function in type 2 diabetic mice by improving β-arrestin 2 translocation and ameliorating Akt/eNOS signal dysfunction.

Taguchi K, Matsumoto T, Kamata K, Kobayashi T.

Endocrinology. 2012 Jul;153(7):2985-96. doi: 10.1210/en.2012-1101. Epub 2012 May 11.

PMID:
22581458
3.

G protein-coupled receptor kinase 2, with β-arrestin 2, impairs insulin-induced Akt/endothelial nitric oxide synthase signaling in ob/ob mouse aorta.

Taguchi K, Matsumoto T, Kamata K, Kobayashi T.

Diabetes. 2012 Aug;61(8):1978-85. doi: 10.2337/db11-1729. Epub 2012 Jun 11.

4.

[The Role of GRK2 and Its Potential as a New Therapeutic Target in Diabetic Vascular Complications].

Taguchi K.

Yakugaku Zasshi. 2015;135(8):961-7. doi: 10.1248/yakushi.15-00119. Review. Japanese.

5.

Dysfunction of endothelium-dependent relaxation to insulin via PKC-mediated GRK2/Akt activation in aortas of ob/ob mice.

Taguchi K, Kobayashi T, Matsumoto T, Kamata K.

Am J Physiol Heart Circ Physiol. 2011 Aug;301(2):H571-83. doi: 10.1152/ajpheart.01189.2010. Epub 2011 May 13.

6.

Angiotensin II causes endothelial dysfunction via the GRK2/Akt/eNOS pathway in aortas from a murine type 2 diabetic model.

Taguchi K, Kobayashi T, Takenouchi Y, Matsumoto T, Kamata K.

Pharmacol Res. 2011 Nov;64(5):535-46. doi: 10.1016/j.phrs.2011.05.001. Epub 2011 May 6.

PMID:
21571071
7.

Suppressed G-protein-coupled receptor kinase 2 activity protects female diabetic-mouse aorta against endothelial dysfunction.

Taguchi K, Matsumoto T, Kamata K, Kobayashi T.

Acta Physiol (Oxf). 2013 Jan;207(1):142-55. doi: 10.1111/j.1748-1716.2012.02473.x. Epub 2012 Aug 27.

PMID:
22925038
8.

Roles of ROS and PKC-βII in ionizing radiation-induced eNOS activation in human vascular endothelial cells.

Sakata K, Kondo T, Mizuno N, Shoji M, Yasui H, Yamamori T, Inanami O, Yokoo H, Yoshimura N, Hattori Y.

Vascul Pharmacol. 2015 Jul;70:55-65. doi: 10.1016/j.vph.2015.03.016. Epub 2015 Apr 11.

PMID:
25869503
9.

PPARβ activation restores the high glucose-induced impairment of insulin signalling in endothelial cells.

Quintela AM, Jiménez R, Piqueras L, Gómez-Guzmán M, Haro J, Zarzuelo MJ, Cogolludo A, Sanz MJ, Toral M, Romero M, Pérez-Vizcaíno F, Duarte J.

Br J Pharmacol. 2014 Jun;171(12):3089-102. doi: 10.1111/bph.12646.

10.

CCN1 acutely increases nitric oxide production via integrin αvβ3-Akt-S6K-phosphorylation of endothelial nitric oxide synthase at the serine 1177 signaling axis.

Hwang S, Lee HJ, Kim G, Won KJ, Park YS, Jo I.

Free Radic Biol Med. 2015 Dec;89:229-40. doi: 10.1016/j.freeradbiomed.2015.08.005. Epub 2015 Sep 21.

PMID:
26393424
11.

Short-term high glucose exposure impairs insulin signaling in endothelial cells.

De Nigris V, Pujadas G, La Sala L, Testa R, Genovese S, Ceriello A.

Cardiovasc Diabetol. 2015 Aug 22;14:114. doi: 10.1186/s12933-015-0278-0.

12.

Selective recruitment of G protein-coupled receptor kinases (GRKs) controls signaling of the insulin-like growth factor 1 receptor.

Zheng H, Worrall C, Shen H, Issad T, Seregard S, Girnita A, Girnita L.

Proc Natl Acad Sci U S A. 2012 May 1;109(18):7055-60. doi: 10.1073/pnas.1118359109. Epub 2012 Apr 16.

14.

Insulin reverses D-glucose-increased nitric oxide and reactive oxygen species generation in human umbilical vein endothelial cells.

González M, Rojas S, Avila P, Cabrera L, Villalobos R, Palma C, Aguayo C, Peña E, Gallardo V, Guzmán-Gutiérrez E, Sáez T, Salsoso R, Sanhueza C, Pardo F, Leiva A, Sobrevia L.

PLoS One. 2015 Apr 14;10(4):e0122398. doi: 10.1371/journal.pone.0122398. eCollection 2015.

15.

β-arrestin is critical for early shear stress-induced Akt/eNOS activation in human vascular endothelial cells.

Carneiro AP, Fonseca-Alaniz MH, Dallan LA, Miyakawa AA, Krieger JE.

Biochem Biophys Res Commun. 2017 Jan 29;483(1):75-81. doi: 10.1016/j.bbrc.2017.01.003. Epub 2017 Jan 4.

PMID:
28062183
16.

Contribution of insulin and Akt1 signaling to endothelial nitric oxide synthase in the regulation of endothelial function and blood pressure.

Symons JD, McMillin SL, Riehle C, Tanner J, Palionyte M, Hillas E, Jones D, Cooksey RC, Birnbaum MJ, McClain DA, Zhang QJ, Gale D, Wilson LJ, Abel ED.

Circ Res. 2009 May 8;104(9):1085-94. doi: 10.1161/CIRCRESAHA.108.189316. Epub 2009 Apr 2.

17.

G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms.

Taguchi K, Matsumoto T, Kobayashi T.

J Smooth Muscle Res. 2015;51:37-49. doi: 10.1540/jsmr.51.37. Review.

18.

Resveratrol rescues hyperglycemia-induced endothelial dysfunction via activation of Akt.

Li JY, Huang WQ, Tu RH, Zhong GQ, Luo BB, He Y.

Acta Pharmacol Sin. 2017 Feb;38(2):182-191. doi: 10.1038/aps.2016.109. Epub 2016 Dec 12.

19.

Arginine vasopressin enhances cell survival via a G protein-coupled receptor kinase 2/β-arrestin1/extracellular-regulated kinase 1/2-dependent pathway in H9c2 cells.

Zhu W, Tilley DG, Myers VD, Coleman RC, Feldman AM.

Mol Pharmacol. 2013 Aug;84(2):227-35. doi: 10.1124/mol.113.086322. Epub 2013 May 20.

20.

Fibroblast growth factor 21 protects against high glucose induced cellular damage and dysfunction of endothelial nitric-oxide synthase in endothelial cells.

Wang XM, Song SS, Xiao H, Gao P, Li XJ, Si LY.

Cell Physiol Biochem. 2014;34(3):658-71. doi: 10.1159/000363031. Epub 2014 Aug 13.

Supplemental Content

Support Center