Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 133

1.

Influence of aqueous media on the ROS-mediated toxicity of ZnO nanoparticles toward green fluorescent protein-expressing Escherichia coli under UV-365 irradiation.

Li Y, Niu J, Zhang W, Zhang L, Shang E.

Langmuir. 2014 Mar 18;30(10):2852-62. doi: 10.1021/la5000028. Epub 2014 Mar 7.

PMID:
24568235
2.

Effect of aqueous media on the copper-ion-mediated phototoxicity of CuO nanoparticles toward green fluorescent protein-expressing Escherichia coli.

Shang E, Li Y, Niu J, Guo H, Zhou Y, Liu H, Zhang X.

Ecotoxicol Environ Saf. 2015 Dec;122:238-44. doi: 10.1016/j.ecoenv.2015.08.002. Epub 2015 Sep 20.

PMID:
26283288
3.

Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components.

Li M, Zhu L, Lin D.

Environ Sci Technol. 2011 Mar 1;45(5):1977-83. doi: 10.1021/es102624t. Epub 2011 Jan 31.

PMID:
21280647
4.

The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters.

Thwala M, Musee N, Sikhwivhilu L, Wepener V.

Environ Sci Process Impacts. 2013 Oct;15(10):1830-43. doi: 10.1039/c3em00235g.

PMID:
23917884
5.
6.

Testing nanoeffect onto model bacteria: Impact of speciation and genotypes.

Gelabert A, Sivry Y, Gobbi P, Mansouri-Guilani N, Menguy N, Brayner R, Siron V, Benedetti MF, Ferrari R.

Nanotoxicology. 2016;10(2):216-25. doi: 10.3109/17435390.2015.1048323. Epub 2015 Nov 23.

PMID:
26593393
7.

Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution.

Ma H, Wallis LK, Diamond S, Li S, Canas-Carrell J, Parra A.

Environ Pollut. 2014 Oct;193:165-172. doi: 10.1016/j.envpol.2014.06.027. Epub 2014 Jul 15.

PMID:
25033018
8.

The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio).

Zhu X, Wang J, Zhang X, Chang Y, Chen Y.

Nanotechnology. 2009 May 13;20(19):195103. doi: 10.1088/0957-4484/20/19/195103. Epub 2009 Apr 20.

PMID:
19420631
9.

Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation, ˙OH production and particle dissolution in distilled water.

Yu LP, Fang T, Xiong DW, Zhu WT, Sima XF.

J Environ Monit. 2011 Jul;13(7):1975-82. doi: 10.1039/c1em10197h. Epub 2011 May 24.

PMID:
21611643
10.

The effects of different coatings on zinc oxide nanoparticles and their influence on dissolution and bioaccumulation by the green alga, C. reinhardtii.

Merdzan V, Domingos RF, Monteiro CE, Hadioui M, Wilkinson KJ.

Sci Total Environ. 2014 Aug 1;488-489:316-24. doi: 10.1016/j.scitotenv.2014.04.094. Epub 2014 May 15.

PMID:
24836387
11.

Anomalous antibacterial activity and dye degradation by selenium doped ZnO nanoparticles.

Dutta RK, Nenavathu BP, Talukdar S.

Colloids Surf B Biointerfaces. 2014 Feb 1;114:218-24. doi: 10.1016/j.colsurfb.2013.10.007. Epub 2013 Oct 16.

PMID:
24200949
12.

Photoinduced Dynamics and Toxicity of a Cancer Drug in Proximity of Inorganic Nanoparticles under Visible Light.

Chaudhuri S, Sardar S, Bagchi D, Dutta S, Debnath S, Saha P, Lemmens P, Pal SK.

Chemphyschem. 2016 Jan 18;17(2):270-7. doi: 10.1002/cphc.201500905. Epub 2015 Nov 26.

PMID:
26563628
13.

Interaction of ZnO nanoparticles with microbes--a physio and biochemical assay.

Padmavathy N, Vijayaraghavan R.

J Biomed Nanotechnol. 2011 Dec;7(6):813-22.

PMID:
22416581
14.

Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation.

Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AV.

Colloids Surf B Biointerfaces. 2012 Jun 1;94:143-50. doi: 10.1016/j.colsurfb.2012.01.046. Epub 2012 Feb 7.

PMID:
22348987
15.

Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants.

Memarzadeh K, Sharili AS, Huang J, Rawlinson SC, Allaker RP.

J Biomed Mater Res A. 2015 Mar;103(3):981-9. doi: 10.1002/jbm.a.35241. Epub 2014 Jun 4.

PMID:
24862288
16.

Distinct biokinetic behavior of ZnO nanoparticles in Daphnia magna quantified by synthesizing ⁶⁵Zn tracer.

Li WM, Wang WX.

Water Res. 2013 Feb 1;47(2):895-902. doi: 10.1016/j.watres.2012.11.018. Epub 2012 Nov 20.

PMID:
23200802
17.

The effect of titanium dioxide (TiO2) nano-objects, and their aggregates and agglomerates greater than 100nm (NOAA) on microbes under UV irradiation.

Yamada I, Nomura K, Iwahashi H, Horie M.

Chemosphere. 2016 Jan;143:123-7. doi: 10.1016/j.chemosphere.2015.04.017. Epub 2015 May 5.

PMID:
25956024
18.

Insight into the Mechanism of Antibacterial Activity of ZnO: Surface Defects Mediated Reactive Oxygen Species Even in the Dark.

Lakshmi Prasanna V, Vijayaraghavan R.

Langmuir. 2015 Aug 25;31(33):9155-62. doi: 10.1021/acs.langmuir.5b02266. Epub 2015 Aug 12.

PMID:
26222950
19.

Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination.

Leung YH, Chan CM, Ng AM, Chan HT, Chiang MW, Djurišić AB, Ng YH, Jim WY, Guo MY, Leung FC, Chan WK, Au DT.

Nanotechnology. 2012 Nov 30;23(47):475703. doi: 10.1088/0957-4484/23/47/475703. Epub 2012 Oct 26.

PMID:
23103840
20.

Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles.

Li Y, Zhang W, Niu J, Chen Y.

ACS Nano. 2012 Jun 26;6(6):5164-73. doi: 10.1021/nn300934k. Epub 2012 May 18.

PMID:
22587225

Supplemental Content

Support Center