Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation.

Halimaa P, Lin YF, Ahonen VH, Blande D, Clemens S, Gyenesei A, Häikiö E, Kärenlampi SO, Laiho A, Aarts MG, Pursiheimo JP, Schat H, Schmidt H, Tuomainen MH, Tervahauta AI.

Environ Sci Technol. 2014 Mar 18;48(6):3344-53. doi: 10.1021/es4042995. Epub 2014 Mar 6.

PMID:
24559272
2.

Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation.

Milner MJ, Mitani-Ueno N, Yamaji N, Yokosho K, Craft E, Fei Z, Ebbs S, Clemencia Zambrano M, Ma JF, Kochian LV.

Plant J. 2014 May;78(3):398-410. doi: 10.1111/tpj.12480. Epub 2014 Apr 2.

3.

De novo transcriptome assemblies of four accessions of the metal hyperaccumulator plant Noccaea caerulescens.

Blande D, Halimaa P, Tervahauta AI, Aarts MG, Kärenlampi SO.

Sci Data. 2017 Jan 31;4:160131. doi: 10.1038/sdata.2016.131.

4.

Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous 'Ganges' in field trials.

Jacobs A, Drouet T, Sterckeman T, Noret N.

Environ Sci Pollut Res Int. 2017 Mar;24(9):8176-8188. doi: 10.1007/s11356-017-8504-9. Epub 2017 Jan 31.

PMID:
28144868
5.

Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils.

Mandáková T, Singh V, Krämer U, Lysak MA.

Plant Physiol. 2015 Sep;169(1):674-89. doi: 10.1104/pp.15.00619. Epub 2015 Jul 20.

6.

Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens.

Ó Lochlainn S, Bowen HC, Fray RG, Hammond JP, King GJ, White PJ, Graham NS, Broadley MR.

PLoS One. 2011 Mar 10;6(3):e17814. doi: 10.1371/journal.pone.0017814.

7.

Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system.

Milner MJ, Kochian LV.

Ann Bot. 2008 Jul;102(1):3-13. doi: 10.1093/aob/mcn063. Epub 2008 Apr 25. Review.

8.

Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana.

Lin YF, Hassan Z, Talukdar S, Schat H, Aarts MG.

PLoS One. 2016 Mar 1;11(3):e0149750. doi: 10.1371/journal.pone.0149750. eCollection 2016.

9.

Transcription profiling of the metal-hyperaccumulator Thlaspi caerulescens (J. & C. PRESL).

Plessl M, Rigola D, Hassinen V, Aarts MG, Schat H.

Z Naturforsch C. 2005 Mar-Apr;60(3-4):216-23.

PMID:
15948586
10.

Soil geochemical factors regulate Cd accumulation by metal hyperaccumulating Noccaea caerulescens (J. Presl & C. Presl) F.K. Mey in field-contaminated soils.

Rosenfeld CE, Chaney RL, Martínez CE.

Sci Total Environ. 2018 Mar;616-617:279-287. doi: 10.1016/j.scitotenv.2017.11.016. Epub 2017 Nov 6.

PMID:
29121576
11.

Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.

Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ.

J Exp Bot. 2007;58(7):1717-28. Epub 2007 Apr 2.

PMID:
17404382
12.

A bisphosphonate increasing the shoot biomass of the metal hyperaccumulator Noccaea caerulescens.

Alanne AL, Peräniemi S, Turhanen P, Tuomainen M, Vepsäläinen J, Tervahauta A.

Chemosphere. 2014 Jan;95:566-71. doi: 10.1016/j.chemosphere.2013.09.116. Epub 2013 Oct 29.

PMID:
24182405
13.

Comparative transcriptome analysis of the metal hyperaccumulator Noccaea caerulescens.

Halimaa P, Blande D, Aarts MG, Tuomainen M, Tervahauta A, Kärenlampi S.

Front Plant Sci. 2014 May 20;5:213. doi: 10.3389/fpls.2014.00213. eCollection 2014. Review.

14.

Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens.

Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP.

Plant Physiol. 2002 Apr;128(4):1359-67.

15.

Molecular mechanisms of metal hyperaccumulation in plants.

Verbruggen N, Hermans C, Schat H.

New Phytol. 2009 Mar;181(4):759-76. doi: 10.1111/j.1469-8137.2008.02748.x. Review.

16.

Characterization of Zinc and Cadmium Hyperaccumulation in Three Noccaea (Brassicaceae) Populations from Non-metalliferous Sites in the Eastern Pyrenees.

Martos S, Gallego B, Sáez L, López-Alvarado J, Cabot C, Poschenrieder C.

Front Plant Sci. 2016 Feb 9;7:128. doi: 10.3389/fpls.2016.00128. eCollection 2016.

17.

A comprehensive set of transcript sequences of the heavy metal hyperaccumulator Noccaea caerulescens.

Lin YF, Severing EI, Te Lintel Hekkert B, Schijlen E, Aarts MG.

Front Plant Sci. 2014 Jun 20;5:261. doi: 10.3389/fpls.2014.00261. eCollection 2014.

18.

Thlaspi caerulescens (Brassicaceae) population genetics in western Switzerland: is the genetic structure affected by natural variation of soil heavy metal concentrations?

Besnard G, Basic N, Christin PA, Savova-Bianchi D, Galland N.

New Phytol. 2009 Mar;181(4):974-84. doi: 10.1111/j.1469-8137.2008.02706.x.

19.

Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation.

Milner MJ, Craft E, Yamaji N, Koyama E, Ma JF, Kochian LV.

New Phytol. 2012 Jul;195(1):113-23. doi: 10.1111/j.1469-8137.2012.04144.x. Epub 2012 Apr 23.

Supplemental Content

Support Center