Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Transient mild hyperthermia induces E-selectin mediated localization of mesoporous silicon vectors in solid tumors.

Kirui DK, Mai J, Palange AL, Qin G, van de Ven AL, Liu X, Shen H, Ferrari M.

PLoS One. 2014 Feb 18;9(2):e86489. doi: 10.1371/journal.pone.0086489. eCollection 2014.

2.

Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport.

Kirui DK, Koay EJ, Guo X, Cristini V, Shen H, Ferrari M.

Nanomedicine. 2014 Oct;10(7):1487-96. doi: 10.1016/j.nano.2013.11.001. Epub 2013 Nov 18.

3.

Bone marrow endothelium-targeted therapeutics for metastatic breast cancer.

Mai J, Huang Y, Mu C, Zhang G, Xu R, Guo X, Xia X, Volk DE, Lokesh GL, Thiviyanathan V, Gorenstein DG, Liu X, Ferrari M, Shen H.

J Control Release. 2014 Aug 10;187:22-9. doi: 10.1016/j.jconrel.2014.04.057. Epub 2014 May 10.

4.

Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia.

Li L, ten Hagen TL, Bolkestein M, Gasselhuber A, Yatvin J, van Rhoon GC, Eggermont AM, Haemmerich D, Koning GA.

J Control Release. 2013 Apr 28;167(2):130-7. doi: 10.1016/j.jconrel.2013.01.026. Epub 2013 Feb 4.

PMID:
23391444
5.

Mild hyperthermia enhances transport of liposomal gemcitabine and improves in vivo therapeutic response.

Kirui DK, Celia C, Molinaro R, Bansal SS, Cosco D, Fresta M, Shen H, Ferrari M.

Adv Healthc Mater. 2015 May;4(7):1092-103. doi: 10.1002/adhm.201400738. Epub 2015 Feb 26.

6.

Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size.

Kong G, Braun RD, Dewhirst MW.

Cancer Res. 2000 Aug 15;60(16):4440-5.

7.

The antitumor activity of tumor-homing peptide-modified thermosensitive liposomes containing doxorubicin on MCF-7/ADR: in vitro and in vivo.

Wang C, Wang X, Zhong T, Zhao Y, Zhang WQ, Ren W, Huang D, Zhang S, Guo Y, Yao X, Tang YQ, Zhang X, Zhang Q.

Int J Nanomedicine. 2015 Mar 19;10:2229-48. doi: 10.2147/IJN.S79840. eCollection 2015.

8.

Enhanced Specificity and Drug Delivery in Tumors by cRGD-Anchoring Thermosensitive Liposomes.

Dicheva BM, ten Hagen TL, Seynhaeve AL, Amin M, Eggermont AM, Koning GA.

Pharm Res. 2015 Dec;32(12):3862-76. doi: 10.1007/s11095-015-1746-7. Epub 2015 Jul 23.

9.

Thermal cycling enhances the accumulation of a temperature-sensitive biopolymer in solid tumors.

Dreher MR, Liu W, Michelich CR, Dewhirst MW, Chilkoti A.

Cancer Res. 2007 May 1;67(9):4418-24.

10.

Monoclonal antibody-targeted, temperature-sensitive liposomes: in vivo tumor chemotherapeutics in combination with mild hyperthermia.

Al-Ahmady ZS, Chaloin O, Kostarelos K.

J Control Release. 2014 Dec 28;196:332-43. doi: 10.1016/j.jconrel.2014.10.013. Epub 2014 Oct 24.

PMID:
25456832
11.

Tumor cell apoptosis, lymphocyte recruitment and tumor vascular changes are induced by low temperature, long duration (fever-like) whole body hyperthermia.

Burd R, Dziedzic TS, Xu Y, Caligiuri MA, Subjeck JR, Repasky EA.

J Cell Physiol. 1998 Oct;177(1):137-47.

PMID:
9731754
12.
13.

Multistage delivery of chemotherapeutic nanoparticles for breast cancer treatment.

Blanco E, Sangai T, Hsiao A, Ferrati S, Bai L, Liu X, Meric-Bernstam F, Ferrari M.

Cancer Lett. 2013 Jul 1;334(2):245-52. doi: 10.1016/j.canlet.2012.07.027. Epub 2012 Jul 31.

PMID:
22858582
14.

Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation.

Huang HW, Shih TC, Liauh CT.

Biomed Eng Online. 2010 Mar 26;9:18. doi: 10.1186/1475-925X-9-18.

15.

Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy.

Li L, ten Hagen TL, Hossann M, Süss R, van Rhoon GC, Eggermont AM, Haemmerich D, Koning GA.

J Control Release. 2013 Jun 10;168(2):142-50. doi: 10.1016/j.jconrel.2013.03.011. Epub 2013 Mar 21.

PMID:
23524188
16.

Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery.

Kossatz S, Grandke J, Couleaud P, Latorre A, Aires A, Crosbie-Staunton K, Ludwig R, Dähring H, Ettelt V, Lazaro-Carrillo A, Calero M, Sader M, Courty J, Volkov Y, Prina-Mello A, Villanueva A, Somoza Á, Cortajarena AL, Miranda R, Hilger I.

Breast Cancer Res. 2015 May 13;17:66. doi: 10.1186/s13058-015-0576-1.

17.

Development of a liposomal delivery system for temperature-triggered release of a tumor targeting agent, Ln(III)-DOTA-phenylboronate.

Djanashvili K, ten Hagen TL, Blangé R, Schipper D, Peters JA, Koning GA.

Bioorg Med Chem. 2011 Feb 1;19(3):1123-30. doi: 10.1016/j.bmc.2010.06.036. Epub 2010 Jun 18.

PMID:
20624680
18.

Short-time focused ultrasound hyperthermia enhances liposomal doxorubicin delivery and antitumor efficacy for brain metastasis of breast cancer.

Wu SK, Chiang CF, Hsu YH, Lin TH, Liou HC, Fu WM, Lin WL.

Int J Nanomedicine. 2014 Sep 19;9:4485-94. doi: 10.2147/IJN.S68347. eCollection 2014.

19.

The effects of non-invasive radiofrequency electric field hyperthermia on biotransport and biodistribution of fluorescent [60]fullerene derivative in a murine orthotopic model of breast adenocarcinoma.

Lapin NA, Krzykawska-Serda M, Dilliard S, Mackeyev Y, Serda M, Wilson LJ, Curley SA, Corr SJ.

J Control Release. 2017 Aug 28;260:92-99. doi: 10.1016/j.jconrel.2017.05.022. Epub 2017 May 17.

PMID:
28527736

Supplemental Content

Support Center