Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 354

1.

Wettability of natural superhydrophobic surfaces.

Webb HK, Crawford RJ, Ivanova EP.

Adv Colloid Interface Sci. 2014 Aug;210:58-64. doi: 10.1016/j.cis.2014.01.020. Epub 2014 Feb 4.

PMID:
24556235
2.

Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.

Liu M, Zheng Y, Zhai J, Jiang L.

Acc Chem Res. 2010 Mar 16;43(3):368-77. doi: 10.1021/ar900205g. Review.

PMID:
19954162
3.

Wetting and dewetting transitions on hierarchical superhydrophobic surfaces.

Boreyko JB, Baker CH, Poley CR, Chen CH.

Langmuir. 2011 Jun 21;27(12):7502-9. doi: 10.1021/la201587u. Epub 2011 May 23.

PMID:
21604679
4.

Nature inspired structured surfaces for biomedical applications.

Webb HK, Hasan J, Truong VK, Crawford RJ, Ivanova EP.

Curr Med Chem. 2011;18(22):3367-75. Review.

PMID:
21728964
5.

Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.

Teisala H, Tuominen M, Aromaa M, Stepien M, Mäkelä JM, Saarinen JJ, Toivakka M, Kuusipalo J.

Langmuir. 2012 Feb 14;28(6):3138-45. doi: 10.1021/la203155d. Epub 2012 Feb 3.

PMID:
22263866
6.

Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.

Yan YY, Gao N, Barthlott W.

Adv Colloid Interface Sci. 2011 Dec 12;169(2):80-105. doi: 10.1016/j.cis.2011.08.005. Epub 2011 Sep 14. Review.

PMID:
21974918
7.

Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.

Cortese B, D'Amone S, Manca M, Viola I, Cingolani R, Gigli G.

Langmuir. 2008 Mar 18;24(6):2712-8. doi: 10.1021/la702764x. Epub 2008 Jan 25.

PMID:
18217778
8.

Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.

Latthe SS, Terashima C, Nakata K, Fujishima A.

Molecules. 2014 Apr 4;19(4):4256-83. doi: 10.3390/molecules19044256. Review.

9.

Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon.

Zhu L, Xiu Y, Xu J, Tamirisa PA, Hess DW, Wong CP.

Langmuir. 2005 Nov 22;21(24):11208-12.

PMID:
16285792
10.

Superhydrophobic surfaces from hierarchically structured wrinkled polymers.

Li Y, Dai S, John J, Carter KR.

ACS Appl Mater Interfaces. 2013 Nov 13;5(21):11066-73. doi: 10.1021/am403209r. Epub 2013 Nov 4.

PMID:
24131534
11.

Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.

Sasmal AK, Mondal C, Sinha AK, Gauri SS, Pal J, Aditya T, Ganguly M, Dey S, Pal T.

ACS Appl Mater Interfaces. 2014 Dec 24;6(24):22034-43. doi: 10.1021/am5072892. Epub 2014 Dec 5.

PMID:
25419984
12.

Fabrication of Superhydrophobic Surfaces with Controllable Electrical Conductivity and Water Adhesion.

Ye L, Guan J, Li Z, Zhao J, Ye C, You J, Li Y.

Langmuir. 2017 Feb 14;33(6):1368-1374. doi: 10.1021/acs.langmuir.6b03848. Epub 2017 Feb 1.

PMID:
28052672
13.

Peanut leaf inspired multifunctional surfaces.

Yang S, Ju J, Qiu Y, He Y, Wang X, Dou S, Liu K, Jiang L.

Small. 2014 Jan 29;10(2):294-9. doi: 10.1002/smll.201301029. Epub 2013 Aug 1.

PMID:
23908145
14.

Observation of the rose petal effect over single- and dual-scale roughness surfaces.

Yeh KY, Cho KH, Yeh YH, Promraksa A, Huang CH, Hsu CC, Chen LJ.

Nanotechnology. 2014 Aug 29;25(34):345303. doi: 10.1088/0957-4484/25/34/345303. Epub 2014 Aug 6.

PMID:
25100802
15.

Mechanically durable superhydrophobic surfaces.

Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras RH.

Adv Mater. 2011 Feb 1;23(5):673-8. doi: 10.1002/adma.201003129. Epub 2010 Dec 9. Review.

PMID:
21274919
16.

Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties.

Xu QF, Liu Y, Lin FJ, Mondal B, Lyons AM.

ACS Appl Mater Interfaces. 2013 Sep 25;5(18):8915-24. doi: 10.1021/am401668y. Epub 2013 Sep 6.

PMID:
23889192
17.

The role of bio-inspired hierarchical structures in wetting.

Grewal HS, Cho IJ, Yoon ES.

Bioinspir Biomim. 2015 Apr 9;10(2):026009. doi: 10.1088/1748-3190/10/2/026009.

PMID:
25856043
18.

Spatial variations and temporal metastability of the self-cleaning and superhydrophobic properties of damselfly wings.

Hasan J, Webb HK, Truong VK, Watson GS, Watson JA, Tobin MJ, Gervinskas G, Juodkazis S, Wang JY, Crawford RJ, Ivanova EP.

Langmuir. 2012 Dec 18;28(50):17404-9. doi: 10.1021/la303560w. Epub 2012 Dec 4.

PMID:
23181510
19.

Effects of Hierarchical Surface Roughness on Droplet Contact Angle.

Bell MS, Shahraz A, Fichthorn KA, Borhan A.

Langmuir. 2015 Jun 23;31(24):6752-62. doi: 10.1021/acs.langmuir.5b01051. Epub 2015 Jun 11.

PMID:
26030089
20.

Flexible Teflon nanocone array surfaces with tunable superhydrophobicity for self-cleaning and aqueous droplet patterning.

Toma M, Loget G, Corn RM.

ACS Appl Mater Interfaces. 2014 Jul 23;6(14):11110-7. doi: 10.1021/am500735v. Epub 2014 Apr 1.

PMID:
24654844

Supplemental Content

Support Center