Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Controlling cell geometry on substrates of variable stiffness can tune the degree of osteogenesis in human mesenchymal stem cells.

Lee J, Abdeen AA, Huang TH, Kilian KA.

J Mech Behav Biomed Mater. 2014 Oct;38:209-18. doi: 10.1016/j.jmbbm.2014.01.009.

PMID:
24556045
2.

Matrix dimensionality and stiffness cooperatively regulate osteogenesis of mesenchymal stromal cells.

Hsieh WT, Liu YS, Lee YH, Rimando MG, Lin KH, Lee OK.

Acta Biomater. 2016 Mar 1;32:210-22. doi: 10.1016/j.actbio.2016.01.010.

PMID:
26790775
3.

Chondrogenesis on sulfonate-coated hydrogels is regulated by their mechanical properties.

Kwon HJ, Yasuda K.

J Mech Behav Biomed Mater. 2013 Jan;17:337-46. doi: 10.1016/j.jmbbm.2012.10.006. Erratum in: J Mech Behav Biomed Mater. 2013 Dec;28:510. Yasuda, Kazunori [added].

PMID:
23127629
4.

Rewiring mesenchymal stem cell lineage specification by switching the biophysical microenvironment.

Lee J, Abdeen AA, Kilian KA.

Sci Rep. 2014 Jun 5;4:5188. doi: 10.1038/srep05188.

5.

Geometric guidance of integrin mediated traction stress during stem cell differentiation.

Lee J, Abdeen AA, Tang X, Saif TA, Kilian KA.

Biomaterials. 2015 Nov;69:174-83. doi: 10.1016/j.biomaterials.2015.08.005.

6.

Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition.

Lee J, Abdeen AA, Zhang D, Kilian KA.

Biomaterials. 2013 Nov;34(33):8140-8. doi: 10.1016/j.biomaterials.2013.07.074.

PMID:
23932245
7.

Matrix composition and mechanics direct proangiogenic signaling from mesenchymal stem cells.

Abdeen AA, Weiss JB, Lee J, Kilian KA.

Tissue Eng Part A. 2014 Oct;20(19-20):2737-45. doi: 10.1089/ten.TEA.2013.0661.

8.

Interplay of Substrate Conductivity, Cellular Microenvironment, and Pulsatile Electrical Stimulation toward Osteogenesis of Human Mesenchymal Stem Cells in Vitro.

Thrivikraman G, Lee PS, Hess R, Haenchen V, Basu B, Scharnweber D.

ACS Appl Mater Interfaces. 2015 Oct 21;7(41):23015-28. doi: 10.1021/acsami.5b06390.

PMID:
26418613
9.

The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β.

Park JS, Chu JS, Tsou AD, Diop R, Tang Z, Wang A, Li S.

Biomaterials. 2011 Jun;32(16):3921-30. doi: 10.1016/j.biomaterials.2011.02.019.

10.

Influence of select extracellular matrix proteins on mesenchymal stem cell osteogenic commitment in three-dimensional contexts.

Becerra-Bayona S, Guiza-Arguello V, Qu X, Munoz-Pinto DJ, Hahn MS.

Acta Biomater. 2012 Dec;8(12):4397-404. doi: 10.1016/j.actbio.2012.07.048.

11.

Effect of substrate stiffness on differentiation of umbilical cord stem cells.

Witkowska-Zimny M, Walenko K, Wałkiewicz AE, Pojda Z, Przybylski J, Lewandowska-Szumieł M.

Acta Biochim Pol. 2012;59(2):261-4.

12.

Alginate hydrogels containing cell-interactive beads for bone formation.

Bhat A, Hoch AI, Decaris ML, Leach JK.

FASEB J. 2013 Dec;27(12):4844-52. doi: 10.1096/fj.12-213611.

13.

Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds.

Murphy CM, Matsiko A, Haugh MG, Gleeson JP, O'Brien FJ.

J Mech Behav Biomed Mater. 2012 Jul;11:53-62. doi: 10.1016/j.jmbbm.2011.11.009.

PMID:
22658154
14.

Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation.

Rowlands AS, George PA, Cooper-White JJ.

Am J Physiol Cell Physiol. 2008 Oct;295(4):C1037-44. doi: 10.1152/ajpcell.67.2008.

15.

Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation.

Mao AS, Shin JW, Mooney DJ.

Biomaterials. 2016 Aug;98:184-91. doi: 10.1016/j.biomaterials.2016.05.004.

PMID:
27203745
16.

Environmental physical cues determine the lineage specification of mesenchymal stem cells.

Huang C, Dai J, Zhang XA.

Biochim Biophys Acta. 2015 Jun;1850(6):1261-6. doi: 10.1016/j.bbagen.2015.02.011. Review.

17.

Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages.

Her GJ, Wu HC, Chen MH, Chen MY, Chang SC, Wang TW.

Acta Biomater. 2013 Feb;9(2):5170-80. doi: 10.1016/j.actbio.2012.10.012.

PMID:
23079022
18.

Extracellular-matrix tethering regulates stem-cell fate.

Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, Cohen Stuart MA, Boehm H, Li B, Vogel V, Spatz JP, Watt FM, Huck WT.

Nat Mater. 2012 May 27;11(7):642-9. doi: 10.1038/nmat3339. Erratum in: Nat Mater. 2012 Aug;11(8):742.

PMID:
22635042
19.

Osteogenic differentiation of human mesenchymal stem cells on poly(ethylene glycol)-variant biomaterials.

Briggs T, Treiser MD, Holmes PF, Kohn J, Moghe PV, Arinzeh TL.

J Biomed Mater Res A. 2009 Dec 15;91(4):975-84. doi: 10.1002/jbm.a.32310.

20.

Hyaluronic acid matrices show matrix stiffness in 2D and 3D dictates cytoskeletal order and myosin-II phosphorylation within stem cells.

Rehfeldt F, Brown AE, Raab M, Cai S, Zajac AL, Zemel A, Discher DE.

Integr Biol (Camb). 2012 Apr;4(4):422-30. doi: 10.1039/c2ib00150k.

PMID:
22344328
Items per page

Supplemental Content

Support Center