Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Buffering the pH of the culture medium does not extend yeast replicative lifespan.

Wasko BM, Carr DT, Tung H, Doan H, Schurman N, Neault JR, Feng J, Lee J, Zipkin B, Mouser J, Oudanonh E, Nguyen T, Stetina T, Shemorry A, Lemma M, Kaeberlein M.

F1000Res. 2013 Oct 15;2:216. doi: 10.12688/f1000research.2-216.v1. eCollection 2013.

2.

pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast.

Murakami C, Delaney JR, Chou A, Carr D, Schleit J, Sutphin GL, An EH, Castanza AS, Fletcher M, Goswami S, Higgins S, Holmberg M, Hui J, Jelic M, Jeong KS, Kim JR, Klum S, Liao E, Lin MS, Lo W, Miller H, Moller R, Peng ZJ, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Schuster A, Singh M, Spector BL, Vander Wende H, Wang AM, Wasko BM, Olsen B, Kaeberlein M.

Cell Cycle. 2012 Aug 15;11(16):3087-96. doi: 10.4161/cc.21465. Epub 2012 Aug 8.

3.

Composition and acidification of the culture medium influences chronological aging similarly in vineyard and laboratory yeast.

Murakami CJ, Wall V, Basisty N, Kaeberlein M.

PLoS One. 2011;6(9):e24530. doi: 10.1371/journal.pone.0024530. Epub 2011 Sep 19.

4.

Dietary restriction and mitochondrial function link replicative and chronological aging in Saccharomyces cerevisiae.

Delaney JR, Murakami C, Chou A, Carr D, Schleit J, Sutphin GL, An EH, Castanza AS, Fletcher M, Goswami S, Higgins S, Holmberg M, Hui J, Jelic M, Jeong KS, Kim JR, Klum S, Liao E, Lin MS, Lo W, Miller H, Moller R, Peng ZJ, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Schuster A, Singh M, Spector BL, Wende HV, Wang AM, Wasko BM, Olsen B, Kaeberlein M.

Exp Gerontol. 2013 Oct;48(10):1006-13. doi: 10.1016/j.exger.2012.12.001. Epub 2012 Dec 9.

5.

Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae.

Fabrizio P, Pletcher SD, Minois N, Vaupel JW, Longo VD.

FEBS Lett. 2004 Jan 16;557(1-3):136-42.

6.

Independent and additive effects of glutamic acid and methionine on yeast longevity.

Wu Z, Song L, Liu SQ, Huang D.

PLoS One. 2013 Nov 7;8(11):e79319. doi: 10.1371/journal.pone.0079319. eCollection 2013.

7.

A genomic analysis of chronological longevity factors in budding yeast.

Burtner CR, Murakami CJ, Olsen B, Kennedy BK, Kaeberlein M.

Cell Cycle. 2011 May 1;10(9):1385-96. Epub 2011 May 1.

8.

At neutral pH the chronological lifespan of Hansenula polymorpha increases upon enhancing the carbon source concentrations.

Kawałek A, van der Klei IJ.

Microb Cell. 2014 May 20;1(6):189-202. doi: 10.15698/mic2014.06.149.

9.

Availability of Amino Acids Extends Chronological Lifespan by Suppressing Hyper-Acidification of the Environment in Saccharomyces cerevisiae.

Maruyama Y, Ito T, Kodama H, Matsuura A.

PLoS One. 2016 Mar 18;11(3):e0151894. doi: 10.1371/journal.pone.0151894. eCollection 2016.

10.

Quantifying yeast chronological life span by outgrowth of aged cells.

Murakami C, Kaeberlein M.

J Vis Exp. 2009 May 6;(27). pii: 1156. doi: 10.3791/1156.

11.

A molecular mechanism of chronological aging in yeast.

Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M.

Cell Cycle. 2009 Apr 15;8(8):1256-70. Epub 2009 Apr 23.

12.

Measuring replicative life span in the budding yeast.

Steffen KK, Kennedy BK, Kaeberlein M.

J Vis Exp. 2009 Jun 25;(28). pii: 1209. doi: 10.3791/1209.

13.

Dietary restriction depends on nutrient composition to extend chronological lifespan in budding yeast Saccharomyces cerevisiae.

Wu Z, Liu SQ, Huang D.

PLoS One. 2013 May 17;8(5):e64448. doi: 10.1371/journal.pone.0064448. Print 2013.

14.

Caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of a quiescent state, entry into a non-quiescent state and survival in the non-quiescent state.

Leonov A, Feldman R, Piano A, Arlia-Ciommo A, Lutchman V, Ahmadi M, Elsaser S, Fakim H, Heshmati-Moghaddam M, Hussain A, Orfali S, Rajen H, Roofigari-Esfahani N, Rosanelli L, Titorenko VI.

Oncotarget. 2017 Sep 1;8(41):69328-69350. doi: 10.18632/oncotarget.20614. eCollection 2017 Sep 19.

15.

The impact of medium acidity on the chronological life span of Saccharomyces cerevisiae - lipids, signaling cascades, mitochondrial and vacuolar functions.

Yucel EB, Eraslan S, Ulgen KO.

FEBS J. 2014 Feb;281(4):1281-303. doi: 10.1111/febs.12705. Epub 2014 Jan 21.

16.
17.

Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast.

Choi JS, Lee CK.

Biochem Biophys Res Commun. 2013 Sep 13;439(1):126-31. doi: 10.1016/j.bbrc.2013.08.014. Epub 2013 Aug 11.

PMID:
23942118
18.

Growth culture conditions and nutrient signaling modulating yeast chronological longevity.

Santos J, Leão C, Sousa MJ.

Oxid Med Cell Longev. 2012;2012:680304. doi: 10.1155/2012/680304. Epub 2012 Aug 9. Review.

19.

Mnsod overexpression extends the yeast chronological (G(0)) life span but acts independently of Sir2p histone deacetylase to shorten the replicative life span of dividing cells.

Harris N, Costa V, MacLean M, Mollapour M, Moradas-Ferreira P, Piper PW.

Free Radic Biol Med. 2003 Jun 15;34(12):1599-606.

PMID:
12788479
20.

A method for high-throughput quantitative analysis of yeast chronological life span.

Murakami CJ, Burtner CR, Kennedy BK, Kaeberlein M.

J Gerontol A Biol Sci Med Sci. 2008 Feb;63(2):113-21.

PMID:
18314444

Supplemental Content

Support Center