Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.
2.

Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits.

Gonzales P, Felix O, Alexander C, Lutz E, Ela W, Eduardo Sáez A.

J Hazard Mater. 2014 Sep 15;280:619-26. doi: 10.1016/j.jhazmat.2014.09.002. Epub 2014 Sep 6.

PMID:
25222928
3.

Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate.

Root RA, Hayes SM, Hammond CM, Maier RM, Chorover J.

Appl Geochem. 2015 Nov 1;62:131-149. Epub 2015 Feb 7.

4.

Reconciling PM10 analyses by different sampling methods for Iron King Mine tailings dust.

Li X, Félix OI, Gonzales P, Sáez AE, Ela WP.

Rev Environ Health. 2016 Mar;31(1):37-41. doi: 10.1515/reveh-2015-0061.

PMID:
26820180
5.

Modeling the emission, transport and deposition of contaminated dust from a mine tailing site.

Stovern M, Betterton EA, Sáez AE, Villar OI, Rine KP, Russell MR, King M.

Rev Environ Health. 2014;29(1-2):91-4. doi: 10.1515/reveh-2014-0023.

6.

Geochemical weathering increases lead bioaccessibility in semi-arid mine tailings.

Hayes SM, Webb SM, Bargar JR, O'Day PA, Maier RM, Chorover J.

Environ Sci Technol. 2012 Jun 5;46(11):5834-41. doi: 10.1021/es300603s. Epub 2012 May 18.

7.

(Micro)spectroscopic analyses of particle size dependence on arsenic distribution and speciation in mine wastes.

Kim CS, Chi C, Miller SR, Rosales RA, Sugihara ES, Akau J, Rytuba JJ, Webb SM.

Environ Sci Technol. 2013 Aug 6;47(15):8164-71. doi: 10.1021/es4010653. Epub 2013 Jul 26.

PMID:
23889478
8.

Environmental and health risk assessment of Pb, Zn, As and Sb in soccer field soils and sediments from mine tailings: solid speciation and bioaccessibility.

Pascaud G, Leveque T, Soubrand M, Boussen S, Joussein E, Dumat C.

Environ Sci Pollut Res Int. 2014 Mar;21(6):4254-64. doi: 10.1007/s11356-013-2297-2. Epub 2013 Dec 4.

PMID:
24306721
9.

Size-dependent characterisation of historical gold mine wastes to examine human pathways of exposure to arsenic and other potentially toxic elements.

Martin R, Dowling K, Pearce DC, Florentine S, Bennett JW, Stopic A.

Environ Geochem Health. 2016 Oct;38(5):1097-114. doi: 10.1007/s10653-015-9775-z. Epub 2015 Nov 4.

PMID:
26537592
10.

Simulation of windblown dust transport from a mine tailings impoundment using a computational fluid dynamics model.

Stovern M, Felix O, Csavina J, Rine KP, Russell MR, Jones RM, King M, Betterton EA, Sáez AE.

Aeolian Res. 2014 Sep 1;14:75-83.

11.

Gastrointestinal microbes increase arsenic bioaccessibility of ingested mine tailings using the simulator of the human intestinal microbial ecosystem.

Laird BD, Van de Wiele TR, Corriveau MC, Jamieson HE, Parsons MB, Verstraete W, Siciliano SD.

Environ Sci Technol. 2007 Aug 1;41(15):5542-7.

PMID:
17822130
12.

Multimedia exposures to arsenic and lead for children near an inactive mine tailings and smelter site.

Loh MM, Sugeng A, Lothrop N, Klimecki W, Cox M, Wilkinson ST, Lu Z, Beamer PI.

Environ Res. 2016 Apr;146:331-9. doi: 10.1016/j.envres.2015.12.011. Epub 2016 Jan 21.

13.

Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10 size fraction of soil.

Boisa N, Elom N, Dean JR, Deary ME, Bird G, Entwistle JA.

Environ Int. 2014 Sep;70:132-42. doi: 10.1016/j.envint.2014.05.021. Epub 2014 Jun 14.

14.

Contamination and risk assessment (based on bioaccessibility via ingestion and inhalation) of metal(loid)s in outdoor and indoor particles from urban centers of Guangzhou, China.

Huang M, Wang W, Chan CY, Cheung KC, Man YB, Wang X, Wong MH.

Sci Total Environ. 2014 May 1;479-480:117-24. doi: 10.1016/j.scitotenv.2014.01.115. Epub 2014 Feb 19.

PMID:
24561290
15.

Effect of particle size on arsenic bioaccessibility in gold mine tailings of Nova Scotia.

Meunier L, Koch I, Reimer KJ.

Sci Total Environ. 2011 May 1;409(11):2233-43. doi: 10.1016/j.scitotenv.2011.02.006. Epub 2011 Mar 23.

PMID:
21435694
16.

Nutritional status and gastrointestinal microbes affect arsenic bioaccessibility from soils and mine tailings in the simulator of the human intestinal microbial ecosystem.

Laird BD, Yeung J, Peak D, Siciliano SD.

Environ Sci Technol. 2009 Nov 15;43(22):8652-7. doi: 10.1021/es900837y.

PMID:
20028066
17.

Size-resolved dust and aerosol contaminants associated with copper and lead smelting emissions: implications for emission management and human health.

Csavina J, Taylor MP, Félix O, Rine KP, Eduardo Sáez A, Betterton EA.

Sci Total Environ. 2014 Sep 15;493:750-6. doi: 10.1016/j.scitotenv.2014.06.031. Epub 2014 Jul 2.

18.

Arsenic distribution and bioaccessibility across particle fractions in historically contaminated soils.

Smith E, Weber J, Juhasz AL.

Environ Geochem Health. 2009 Apr;31 Suppl 1:85-92. doi: 10.1007/s10653-009-9249-2. Epub 2009 Feb 18.

PMID:
19224377
19.

Dust from Zambian smelters: mineralogy and contaminant bioaccessibility.

Ettler V, Vítková M, Mihaljevič M, Šebek O, Klementová M, Veselovský F, Vybíral P, Kříbek B.

Environ Geochem Health. 2014 Oct;36(5):919-33. doi: 10.1007/s10653-014-9609-4. Epub 2014 Apr 12.

PMID:
24729052
20.

Chemical speciation and bioaccessibility of lead in surface soil and house dust, Lavrion urban area, Attiki, Hellas.

Demetriades A, Li X, Ramsey MH, Thornton I.

Environ Geochem Health. 2010 Dec;32(6):529-52. doi: 10.1007/s10653-010-9315-9. Epub 2010 Jun 4.

PMID:
20524052

Supplemental Content

Support Center