Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 219

1.

Advanced oxidation of bromide-containing drinking water: a balance between bromate and trihalomethane formation control.

Wang Y, Yu J, Han P, Sha J, An T, Li W, Liu J, Yang M.

J Environ Sci (China). 2013 Nov 1;25(11):2169-76.

PMID:
24552044
2.

Ozonation of iodide-containing waters: selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs.

Allard S, Nottle CE, Chan A, Joll C, von Gunten U.

Water Res. 2013 Apr 15;47(6):1953-60. doi: 10.1016/j.watres.2012.12.002. Epub 2012 Dec 10.

PMID:
23351431
3.

Pathway fraction of bromate formation during O₃ and O₃/H₂O₂ processes in drinking water treatment.

Qi S, Mao Y, Lv M, Sun L, Wang X, Yang H, Xie YF.

Chemosphere. 2016 Feb;144:2436-42. doi: 10.1016/j.chemosphere.2015.11.022. Epub 2015 Nov 23.

PMID:
26615492
4.

Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone.

Wang Y, Yu J, Zhang D, Yang M.

J Environ Sci (China). 2014 Mar 1;26(3):550-4. doi: 10.1016/S1001-0742(13)60409-X.

PMID:
25079267
5.

Reducing THMFP by H2O2/UV oxidation for humic acid of small molecular weight.

Yen HY, Yen LS.

Environ Technol. 2015 Jan-Feb;36(1-4):417-23. doi: 10.1080/09593330.2014.951075. Epub 2014 Aug 26.

PMID:
25518984
6.

Effects of ozone as a stand-alone and coagulation-aid treatment on the reduction of trihalomethanes precursors from high DOC and hardness water.

Sadrnourmohamadi M, Gorczyca B.

Water Res. 2015 Apr 15;73:171-80. doi: 10.1016/j.watres.2015.01.023. Epub 2015 Jan 26.

PMID:
25659964
7.

Evaluation of pretreatments for inhibiting bromate formation during ozonation.

Antoniou MG, Andersen HR.

Environ Technol. 2012 Jul-Aug;33(13-15):1747-53.

PMID:
22988636
8.

Treatment of volatile organic chemicals on the EPA Contaminant Candidate List using ozonation and the O3/H2O2 advanced oxidation process.

Chen WR, Sharpless CM, Linden KG, Suffet IH.

Environ Sci Technol. 2006 Apr 15;40(8):2734-9.

PMID:
16683616
9.

Formation potentials of bromate and brominated disinfection by-products in bromide-containing water by ozonation.

Lin T, Wu S, Chen W.

Environ Sci Pollut Res Int. 2014 Dec;21(24):13987-4003. doi: 10.1007/s11356-014-3329-2. Epub 2014 Jul 19.

PMID:
25035057
10.
11.
12.

MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation.

Acero JL, Haderlein SB, Schmidt TC, Suter MJ, von Gunten U.

Environ Sci Technol. 2001 Nov 1;35(21):4252-9.

PMID:
11718338
13.

Reducing bromate formation with H(+)-form high silica zeolites during ozonation of bromide-containing water: Effectiveness and mechanisms.

Zhang T, Hou P, Qiang Z, Lu X, Wang Q.

Chemosphere. 2011 Jan;82(4):608-12. doi: 10.1016/j.chemosphere.2010.10.078. Epub 2010 Nov 19.

PMID:
21093888
14.

A comparative study of the removal of 3-indolebutyric acid using advanced oxidation processes.

Solmaz SK, Azak H, Morsunbul T.

Water Environ Res. 2012 Feb;84(2):100-7.

PMID:
22515058
15.

Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water.

Bourgin M, Borowska E, Helbing J, Hollender J, Kaiser HP, Kienle C, McArdell CS, Simon E, von Gunten U.

Water Res. 2017 Oct 1;122:234-245. doi: 10.1016/j.watres.2017.05.018. Epub 2017 May 11.

PMID:
28601791
16.

Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process.

Yao W, Qu Q, von Gunten U, Chen C, Yu G, Wang Y.

Water Res. 2017 Jan 1;108:373-382. doi: 10.1016/j.watres.2016.11.014. Epub 2016 Nov 4.

PMID:
27839831
17.

Characterization of haloacetaldehyde and trihalomethane formation potentials during drinking water treatment.

Mao YQ, Wang XM, Guo XF, Yang HW, Xie YF.

Chemosphere. 2016 Sep;159:378-384. doi: 10.1016/j.chemosphere.2016.05.088. Epub 2016 Jun 17.

PMID:
27318452
18.

Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation.

De Vera GA, Stalter D, Gernjak W, Weinberg HS, Keller J, Farré MJ.

Water Res. 2015 Dec 15;87:49-58. doi: 10.1016/j.watres.2015.09.007. Epub 2015 Sep 8.

PMID:
26378731
19.

Process analysis and economics of drinking water production from coastal aquifers containing chromophoric dissolved organic matter and bromide using nanofiltration and ozonation.

Sobhani R, McVicker R, Spangenberg C, Rosso D.

J Environ Manage. 2012 Jan;93(1):209-17. doi: 10.1016/j.jenvman.2011.09.011. Epub 2011 Oct 12.

PMID:
22054587
20.

Changes in different organic matter fractions during conventional treatment and advanced treatment.

Chen C, Zhang X, Zhu L, He W, Han H.

J Environ Sci (China). 2011;23(4):582-6.

PMID:
21793399

Supplemental Content

Support Center