Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz.

Wu B, Tuncer HM, Naeem M, Yang B, Cole MT, Milne WI, Hao Y.

Sci Rep. 2014 Feb 19;4:4130. doi: 10.1038/srep04130.

2.

An ultra-broadband multilayered graphene absorber.

Amin M, Farhat M, Bağcı H.

Opt Express. 2013 Dec 2;21(24):29938-48. doi: 10.1364/OE.21.029938.

PMID:
24514545
3.

Broadband, Spectrally Flat, Graphene-based Terahertz Modulators.

Shi F, Chen Y, Han P, Tassin P.

Small. 2015 Dec 2;11(45):6044-50. doi: 10.1002/smll.201502036. Epub 2015 Oct 8.

PMID:
26448571
4.

Hybrid of MoS₂ and Reduced Graphene Oxide: A Lightweight and Broadband Electromagnetic Wave Absorber.

Wang Y, Chen D, Yin X, Xu P, Wu F, He M.

ACS Appl Mater Interfaces. 2015 Dec 2;7(47):26226-34. doi: 10.1021/acsami.5b08410. Epub 2015 Nov 17.

PMID:
26575796
5.
6.

Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range.

Ye L, Chen Y, Cai G, Liu N, Zhu J, Song Z, Liu QH.

Opt Express. 2017 May 15;25(10):11223-11232. doi: 10.1364/OE.25.011223.

PMID:
28788804
7.

Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface.

Zhao YT, Wu B, Huang BJ, Cheng Q.

Opt Express. 2017 Apr 3;25(7):7161-7169. doi: 10.1364/OE.25.007161.

PMID:
28380841
8.

Simulation, fabrication and characterization of THz metamaterial absorbers.

Grant JP, McCrindle IJ, Cumming DR.

J Vis Exp. 2012 Dec 27;(70). pii: 50114. doi: 10.3791/50114.

9.

Selective Pyroelectric Detection of Millimetre Waves Using Ultra-Thin Metasurface Absorbers.

Kuznetsov SA, Paulish AG, Navarro-Cía M, Arzhannikov AV.

Sci Rep. 2016 Feb 16;6:21079. doi: 10.1038/srep21079.

10.

Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect.

Gao F, Zhu Z, Xu W, Zhang J, Guo C, Liu K, Yuan X, Qin S.

Opt Express. 2017 May 1;25(9):9579-9586. doi: 10.1364/OE.25.009579.

PMID:
28468340
11.

Optically transparent microwave screens based on engineered graphene layers.

Grande M, Bianco GV, Vincenti MA, de Ceglia D, Capezzuto P, Petruzzelli V, Scalora M, Bruno G, D'Orazio A.

Opt Express. 2016 Oct 3;24(20):22788-22795. doi: 10.1364/OE.24.022788.

PMID:
27828344
12.

Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth.

Chen PY, Farhat M, Bağcı H.

Nanotechnology. 2015 Apr 24;26(16):164002. doi: 10.1088/0957-4484/26/16/164002. Epub 2015 Mar 31.

PMID:
25824491
13.

Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings.

Li Z, Palacios E, Butun S, Kocer H, Aydin K.

Sci Rep. 2015 Oct 9;5:15137. doi: 10.1038/srep15137.

14.

Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency.

Zhang Y, Feng Y, Zhu B, Zhao J, Jiang T.

Opt Express. 2014 Sep 22;22(19):22743-52. doi: 10.1364/OE.22.022743.

PMID:
25321743
15.

Broadband terahertz metamaterial absorber based on tantalum nitride.

Deng G, Yang J, Yin Z.

Appl Opt. 2017 Mar 20;56(9):2449-2454. doi: 10.1364/AO.56.002449.

PMID:
28375351
16.

Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

Yin X, Long C, Li J, Zhu H, Chen L, Guan J, Li X.

Sci Rep. 2015 Oct 19;5:15367. doi: 10.1038/srep15367.

17.

Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers.

Ameer S, Gul IH.

PLoS One. 2016 Jun 7;11(6):e0153544. doi: 10.1371/journal.pone.0153544. eCollection 2016.

18.

Dual broadband metamaterial absorber.

Kim YJ, Yoo YJ, Kim KW, Rhee JY, Kim YH, Lee Y.

Opt Express. 2015 Feb 23;23(4):3861-8. doi: 10.1364/OE.23.003861.

PMID:
25836425
19.

A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber.

Fang J, Liu T, Chen Z, Wang Y, Wei W, Yue X, Jiang Z.

Nanoscale. 2016 Apr 28;8(16):8899-909. doi: 10.1039/c6nr01863g.

PMID:
27072200
20.

Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.

Najim M, Modi G, Mishra YK, Adelung R, Singh D, Agarwala V.

Phys Chem Chem Phys. 2015 Sep 21;17(35):22923-33. doi: 10.1039/c5cp03488d. Epub 2015 Aug 12.

PMID:
26267361

Supplemental Content

Support Center