Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 196

1.

Carbon/MnO(2) double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors.

Li Q, Lu XF, Xu H, Tong YX, Li GR.

ACS Appl Mater Interfaces. 2014 Feb 26;6(4):2726-33. doi: 10.1021/am405271q. Epub 2014 Feb 17.

PMID:
24533678
2.

Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage.

Wang ZL, He XJ, Ye SH, Tong YX, Li GR.

ACS Appl Mater Interfaces. 2014 Jan 8;6(1):642-7. doi: 10.1021/am404751k. Epub 2013 Dec 11.

PMID:
24313311
3.

Hierarchical MnO2 Spheres Decorated by Carbon-Coated Cobalt Nanobeads: Low-Cost and High-Performance Electrode Materials for Supercapacitors.

Zhi J, Reiser O, Huang F.

ACS Appl Mater Interfaces. 2016 Apr 6;8(13):8452-9. doi: 10.1021/acsami.5b12779. Epub 2016 Mar 24.

PMID:
26987041
4.

MnO2 nanolayers on highly conductive TiO(0.54)N(0.46) nanotubes for supercapacitor electrodes with high power density and cyclic stability.

Wang Z, Li Z, Feng J, Yan S, Luo W, Liu J, Yu T, Zou Z.

Phys Chem Chem Phys. 2014 May 14;16(18):8521-8. doi: 10.1039/c3cp55456b.

PMID:
24668150
5.

High-performance nanostructured supercapacitors on a sponge.

Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN.

Nano Lett. 2011 Dec 14;11(12):5165-72. doi: 10.1021/nl2023433. Epub 2011 Nov 28.

PMID:
21923166
6.

MnO2 Nanosheets Grown on Nitrogen-Doped Hollow Carbon Shells as a High-Performance Electrode for Asymmetric Supercapacitors.

Li L, Li R, Gai S, Ding S, He F, Zhang M, Yang P.

Chemistry. 2015 May 4;21(19):7119-26. doi: 10.1002/chem.201500153. Epub 2015 Mar 20.

PMID:
25801647
7.

Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes.

Bao L, Zang J, Li X.

Nano Lett. 2011 Mar 9;11(3):1215-20. doi: 10.1021/nl104205s. Epub 2011 Feb 9.

PMID:
21306113
8.

High-performance asymmetric supercapacitors based on multilayer MnO2 /graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability.

Zhao Y, Ran W, He J, Huang Y, Liu Z, Liu W, Tang Y, Zhang L, Gao D, Gao F.

Small. 2015 Mar 18;11(11):1310-9. doi: 10.1002/smll.201401922. Epub 2014 Nov 10.

PMID:
25384679
9.

Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes.

Tang P, Han L, Zhang L.

ACS Appl Mater Interfaces. 2014 Jul 9;6(13):10506-15. doi: 10.1021/am5021028. Epub 2014 Jun 18.

PMID:
24905133
10.

Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.

Jin Y, Chen H, Chen M, Liu N, Li Q.

ACS Appl Mater Interfaces. 2013 Apr 24;5(8):3408-16. doi: 10.1021/am400457x. Epub 2013 Apr 5.

PMID:
23488813
11.

Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors.

Yang C, Zhou M, Xu Q.

Phys Chem Chem Phys. 2013 Dec 7;15(45):19730-40. doi: 10.1039/c3cp53504e. Epub 2013 Oct 21.

PMID:
24141452
12.

Robust electrodes based on coaxial TiC/C-MnO2 core/shell nanofiber arrays with excellent cycling stability for high-performance supercapacitors.

Zhang X, Peng X, Li W, Li L, Gao B, Wu G, Huo K, Chu PK.

Small. 2015 Apr 17;11(15):1847-56. doi: 10.1002/smll.201402519. Epub 2014 Dec 28.

PMID:
25546735
13.

Hierarchical structures composed of MnCo2O4@MnO2 core-shell nanowire arrays with enhanced supercapacitor properties.

Zheng X, Ye Y, Yang Q, Geng B, Zhang X.

Dalton Trans. 2016 Jan 14;45(2):572-8. doi: 10.1039/c5dt03780h.

PMID:
26608410
14.

Design and synthesis of MnO₂/Mn/MnO₂ sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage.

Li Q, Wang ZL, Li GR, Guo R, Ding LX, Tong YX.

Nano Lett. 2012 Jul 11;12(7):3803-7. doi: 10.1021/nl301748m. Epub 2012 Jun 27.

PMID:
22730918
15.
16.

Controllable template-assisted electrodeposition of single- and multi-walled nanotube arrays for electrochemical energy storage.

Wang ZL, Guo R, Ding LX, Tong YX, Li GR.

Sci Rep. 2013;3:1204. doi: 10.1038/srep01204. Epub 2013 Feb 4.

17.
18.

3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors.

Zhai T, Wang F, Yu M, Xie S, Liang C, Li C, Xiao F, Tang R, Wu Q, Lu X, Tong Y.

Nanoscale. 2013 Aug 7;5(15):6790-6. doi: 10.1039/c3nr01589k.

PMID:
23765341
19.

High-performance hybrid carbon nanotube fibers for wearable energy storage.

Lu Z, Chao Y, Ge Y, Foroughi J, Zhao Y, Wang C, Long H, Wallace GG.

Nanoscale. 2017 Apr 20;9(16):5063-5071. doi: 10.1039/c7nr00408g.

PMID:
28265639
20.

Facilitated charge transport in ternary interconnected electrodes for flexible supercapacitors with excellent power characteristics.

Chen W, He Y, Li X, Zhou J, Zhang Z, Zhao C, Gong C, Li S, Pan X, Xie E.

Nanoscale. 2013 Dec 7;5(23):11733-41. doi: 10.1039/c3nr03923d. Epub 2013 Oct 11.

PMID:
24114203

Supplemental Content

Support Center