Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 601

1.

Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations.

Cochran AJ, Percival ME, Tricarico S, Little JP, Cermak N, Gillen JB, Tarnopolsky MA, Gibala MJ.

Exp Physiol. 2014 May 1;99(5):782-91. doi: 10.1113/expphysiol.2013.077453. Epub 2014 Feb 14.

2.

A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms.

Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ.

J Physiol. 2010 Mar 15;588(Pt 6):1011-22. doi: 10.1113/jphysiol.2009.181743. Epub 2010 Jan 25.

3.

Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans.

Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ.

J Physiol. 2008 Jan 1;586(1):151-60. Epub 2007 Nov 8.

4.

Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle.

Bartlett JD, Hwa Joo C, Jeong TS, Louhelainen J, Cochran AJ, Gibala MJ, Gregson W, Close GL, Drust B, Morton JP.

J Appl Physiol (1985). 2012 Apr;112(7):1135-43. doi: 10.1152/japplphysiol.01040.2011. Epub 2012 Jan 19.

5.

Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle.

Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M.

J Appl Physiol (1985). 2009 Mar;106(3):929-34. doi: 10.1152/japplphysiol.90880.2008. Epub 2008 Dec 26.

6.

Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance.

Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA.

J Physiol. 2006 Sep 15;575(Pt 3):901-11. Epub 2006 Jul 6.

7.

Regular postexercise cooling enhances mitochondrial biogenesis through AMPK and p38 MAPK in human skeletal muscle.

Ihsan M, Markworth JF, Watson G, Choo HC, Govus A, Pham T, Hickey A, Cameron-Smith D, Abbiss CR.

Am J Physiol Regul Integr Comp Physiol. 2015 Aug 1;309(3):R286-94. doi: 10.1152/ajpregu.00031.2015. Epub 2015 Jun 3.

8.

Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen.

Yeo WK, McGee SL, Carey AL, Paton CD, Garnham AP, Hargreaves M, Hawley JA.

Exp Physiol. 2010 Feb;95(2):351-8. doi: 10.1113/expphysiol.2009.049353. Epub 2009 Oct 23.

9.

Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans.

Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ.

J Appl Physiol (1985). 2005 Jun;98(6):1985-90. Epub 2005 Feb 10.

10.

Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work.

MacInnis MJ, Zacharewicz E, Martin BJ, Haikalis ME, Skelly LE, Tarnopolsky MA, Murphy RM, Gibala MJ.

J Physiol. 2017 May 1;595(9):2955-2968. doi: 10.1113/JP272570. Epub 2016 Aug 3.

11.

Low-volume interval training improves muscle oxidative capacity in sedentary adults.

Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ.

Med Sci Sports Exerc. 2011 Oct;43(10):1849-56. doi: 10.1249/MSS.0b013e3182199834.

PMID:
21448086
12.

Repeated sprints alter signaling related to mitochondrial biogenesis in humans.

Serpiello FR, McKenna MJ, Bishop DJ, Aughey RJ, Caldow MK, Cameron-Smith D, Stepto NK.

Med Sci Sports Exerc. 2012 May;44(5):827-34. doi: 10.1249/MSS.0b013e318240067e.

PMID:
22089482
13.

Post-exercise cold water immersion does not alter high intensity interval training-induced exercise performance and Hsp72 responses, but enhances mitochondrial markers.

Aguiar PF, Magalhães SM, Fonseca IA, da Costa Santos VB, de Matos MA, Peixoto MF, Nakamura FY, Crandall C, Araújo HN, Silveira LR, Rocha-Vieira E, de Castro Magalhães F, Amorim FT.

Cell Stress Chaperones. 2016 Sep;21(5):793-804. doi: 10.1007/s12192-016-0704-6. Epub 2016 Jun 8.

14.

Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens.

Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA.

J Appl Physiol (1985). 2008 Nov;105(5):1462-70. doi: 10.1152/japplphysiol.90882.2008. Epub 2008 Sep 4.

15.

Similar skeletal muscle angiogenic and mitochondrial signalling following 8 weeks of endurance exercise in mice: discontinuous versus continuous training.

Malek MH, Hüttemann M, Lee I, Coburn JW.

Exp Physiol. 2013 Mar;98(3):807-18. doi: 10.1113/expphysiol.2012.070169. Epub 2012 Nov 23.

16.

High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle.

Perry CG, Heigenhauser GJ, Bonen A, Spriet LL.

Appl Physiol Nutr Metab. 2008 Dec;33(6):1112-23. doi: 10.1139/H08-097.

PMID:
19088769
17.

Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle.

Egan B, Carson BP, Garcia-Roves PM, Chibalin AV, Sarsfield FM, Barron N, McCaffrey N, Moyna NM, Zierath JR, O'Gorman DJ.

J Physiol. 2010 May 15;588(Pt 10):1779-90. doi: 10.1113/jphysiol.2010.188011. Epub 2010 Mar 22.

18.

Oxidative capacity and glycogen content increase more in arm than leg muscle in sedentary women after intense training.

Nordsborg NB, Connolly L, Weihe P, Iuliano E, Krustrup P, Saltin B, Mohr M.

J Appl Physiol (1985). 2015 Jul 15;119(2):116-23. doi: 10.1152/japplphysiol.00101.2015. Epub 2015 May 28.

19.

Carbohydrate feeding during recovery alters the skeletal muscle metabolic response to repeated sessions of high-intensity interval exercise in humans.

Cochran AJ, Little JP, Tarnopolsky MA, Gibala MJ.

J Appl Physiol (1985). 2010 Mar;108(3):628-36. doi: 10.1152/japplphysiol.00659.2009. Epub 2010 Jan 7.

20.

Sodium bicarbonate ingestion augments the increase in PGC-1α mRNA expression during recovery from intense interval exercise in human skeletal muscle.

Percival ME, Martin BJ, Gillen JB, Skelly LE, MacInnis MJ, Green AE, Tarnopolsky MA, Gibala MJ.

J Appl Physiol (1985). 2015 Dec 1;119(11):1303-12. doi: 10.1152/japplphysiol.00048.2015. Epub 2015 Sep 17.

Supplemental Content

Support Center