Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 150

1.

Expanding the potential of G-quadruplex structures: formation of a heterochiral TBA analogue.

Virgilio A, Varra M, Scuotto M, Capuozzo A, Irace C, Mayol L, Esposito V, Galeone A.

Chembiochem. 2014 Mar 21;15(5):652-5. doi: 10.1002/cbic.201300775.

PMID:
24520055
2.

Unprecedented right- and left-handed quadruplex structures formed by heterochiral oligodeoxyribonucleotides.

Virgilio A, Esposito V, Citarella G, Mangoni A, Mayol L, Galeone A.

Biochimie. 2011 Jul;93(7):1193-6. doi: 10.1016/j.biochi.2011.04.007.

PMID:
21527307
3.

Unfolding and conformational variations of thrombin-binding DNA aptamers: synthesis, circular dichroism and molecular dynamics simulations.

Sun L, Jin H, Zhao X, Liu Z, Guan Y, Yang Z, Zhang L, Zhang L.

ChemMedChem. 2014 May;9(5):993-1001. doi: 10.1002/cmdc.201300564.

PMID:
24715713
4.

Conformation and thermostability of oligonucleotide d(GGTTGGTGTGGTTGG) containing thiophosphoryl internucleotide bonds at different positions.

Zaitseva M, Kaluzhny D, Shchyolkina A, Borisova O, Smirnov I, Pozmogova G.

Biophys Chem. 2010 Jan;146(1):1-6. doi: 10.1016/j.bpc.2009.09.011.

PMID:
19846249
5.

Anomeric DNA quadruplexes.

Kolganova NA, Varizhuk AM, Novikov RA, Florentiev VL, Pozmogova GE, Borisova OF, Shchyolkina AK, Smirnov IP, Kaluzhny DN, Timofeev EN.

Artif DNA PNA XNA. 2014;5(2):e28422. doi: 10.4161/adna.28422.

6.

Investigating the role of T7 and T12 residues on the biological properties of thrombin-binding aptamer: enhancement of anticoagulant activity by a single nucleobase modification.

Borbone N, Bucci M, Oliviero G, Morelli E, Amato J, D'Atri V, D'Errico S, Vellecco V, Cirino G, Piccialli G, Fattorusso C, Varra M, Mayol L, Persico M, Scuotto M.

J Med Chem. 2012 Dec 13;55(23):10716-28. doi: 10.1021/jm301414f.

PMID:
23126678
7.

Dissecting the contribution of thrombin exosite I in the recognition of thrombin binding aptamer.

Pica A, Russo Krauss I, Merlino A, Nagatoishi S, Sugimoto N, Sica F.

FEBS J. 2013 Dec;280(24):6581-8. doi: 10.1111/febs.12561.

8.

5-Hydroxymethyl-2'-deoxyuridine residues in the thrombin binding aptamer: investigating anticoagulant activity by making a tiny chemical modification.

Virgilio A, Petraccone L, Scuotto M, Vellecco V, Bucci M, Mayol L, Varra M, Esposito V, Galeone A.

Chembiochem. 2014 Nov 3;15(16):2427-34. doi: 10.1002/cbic.201402355.

PMID:
25214456
9.

Elongated thrombin binding aptamer: a G-quadruplex cation-sensitive conformational switch.

De Rache A, Kejnovská I, Vorlíčková M, Buess-Herman C.

Chemistry. 2012 Apr 2;18(14):4392-400. doi: 10.1002/chem.201103381.

PMID:
22362492
10.

Thrombin binding aptamer, more than a simple aptamer: chemically modified derivatives and biomedical applications.

Avino A, Fabrega C, Tintore M, Eritja R.

Curr Pharm Des. 2012;18(14):2036-47. Review.

PMID:
22376107
11.

Loop residues of thrombin-binding DNA aptamer impact G-quadruplex stability and thrombin binding.

Nagatoishi S, Isono N, Tsumoto K, Sugimoto N.

Biochimie. 2011 Aug;93(8):1231-8. doi: 10.1016/j.biochi.2011.03.013.

PMID:
21511000
12.

Specific loop modifications of the thrombin-binding aptamer trigger the formation of parallel structures.

Aviñó A, Portella G, Ferreira R, Gargallo R, Mazzini S, Gabelica V, Orozco M, Eritja R.

FEBS J. 2014 Feb;281(4):1085-99. doi: 10.1111/febs.12670.

13.

Kinetics and mechanism of conformational changes in a G-quadruplex of thrombin-binding aptamer induced by Pb2+.

Liu W, Fu Y, Zheng B, Cheng S, Li W, Lau TC, Liang H.

J Phys Chem B. 2011 Nov 10;115(44):13051-6. doi: 10.1021/jp2074489.

PMID:
21950308
14.

Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer.

Pasternak A, Hernandez FJ, Rasmussen LM, Vester B, Wengel J.

Nucleic Acids Res. 2011 Feb;39(3):1155-64. doi: 10.1093/nar/gkq823.

15.

Study of the interaction between the G-quadruplex-forming thrombin-binding aptamer and the porphyrin 5,10,15,20-tetrakis-(N-methyl-4-pyridyl)-21,23H-porphyrin tetratosylate.

del Toro M, Gargallo R, Eritja R, Jaumot J.

Anal Biochem. 2008 Aug 1;379(1):8-15. doi: 10.1016/j.ab.2008.04.044.

PMID:
18492481
16.

The insertion of two 8-methyl-2'-deoxyguanosine residues in tetramolecular quadruplex structures: trying to orientate the strands.

Virgilio A, Esposito V, Citarella G, Pepe A, Mayol L, Galeone A.

Nucleic Acids Res. 2012 Jan;40(1):461-75. doi: 10.1093/nar/gkr670.

17.

G-quadruplex forming oligonucleotides as finely tunable aptamers: towards better DNA mimics.

Montesarchio D.

Nucleic Acids Symp Ser (Oxf). 2008;(52):9-10. doi: 10.1093/nass/nrn005.

18.

Coexistence of G-quadruplex and duplex domains within the secondary structure of 31-mer DNA thrombin-binding aptamer.

Dolinnaya NG, Yuminova AV, Spiridonova VA, Arutyunyan AM, Kopylov AM.

J Biomol Struct Dyn. 2012;30(5):524-31. doi: 10.1080/07391102.2012.687518.

PMID:
22734515
19.

Structural investigations on the anti-HIV G-quadruplex-forming oligonucleotide TGGGAG and its analogues: evidence for the presence of an A-tetrad.

Virgilio A, Esposito V, Citarella G, Mayol L, Galeone A.

Chembiochem. 2012 Oct 15;13(15):2219-24. doi: 10.1002/cbic.201200481.

PMID:
22945376
20.

Single-molecule detection of folding and unfolding of the G-quadruplex aptamer in a nanopore nanocavity.

Shim JW, Tan Q, Gu LQ.

Nucleic Acids Res. 2009 Feb;37(3):972-82. doi: 10.1093/nar/gkn968.

Items per page

Supplemental Content

Support Center