Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Lung development alterations in newborn mice after recovery from exposure to sublethal hyperoxia.

Rieger-Fackeldey E, Park MS, Schanbacher BL, Joshi MS, Chicoine LG, Nelin LD, Bauer JA, Welty SE, Smith CV.

Am J Pathol. 2014 Apr;184(4):1010-6. doi: 10.1016/j.ajpath.2013.12.021. Epub 2014 Feb 8.

PMID:
24518568
2.

Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure.

Velten M, Heyob KM, Rogers LK, Welty SE.

J Appl Physiol (1985). 2010 May;108(5):1347-56. doi: 10.1152/japplphysiol.01392.2009. Epub 2010 Mar 11.

3.

5-Lipoxygenase-activating protein (FLAP) inhibitor MK-0591 prevents aberrant alveolarization in newborn mice exposed to 85% oxygen in a dose- and time-dependent manner.

Park MS, Sohn MH, Kim KE, Park MS, Namgung R, Lee C.

Lung. 2011 Feb;189(1):43-50. doi: 10.1007/s00408-010-9264-1. Epub 2010 Nov 5.

PMID:
21052705
4.

Sphingosine kinase 1 deficiency confers protection against hyperoxia-induced bronchopulmonary dysplasia in a murine model: role of S1P signaling and Nox proteins.

Harijith A, Pendyala S, Reddy NM, Bai T, Usatyuk PV, Berdyshev E, Gorshkova I, Huang LS, Mohan V, Garzon S, Kanteti P, Reddy SP, Raj JU, Natarajan V.

Am J Pathol. 2013 Oct;183(4):1169-82. doi: 10.1016/j.ajpath.2013.06.018. Epub 2013 Aug 8.

5.

Phosphodiesterase 4 inhibition attenuates persistent heart and lung injury by neonatal hyperoxia in rats.

de Visser YP, Walther FJ, Laghmani el H, Steendijk P, Middeldorp M, van der Laarse A, Wagenaar GT.

Am J Physiol Lung Cell Mol Physiol. 2012 Jan 1;302(1):L56-67. doi: 10.1152/ajplung.00041.2011. Epub 2011 Sep 23.

6.

Apoptosis in neonatal murine lung exposed to hyperoxia.

McGrath-Morrow SA, Stahl J.

Am J Respir Cell Mol Biol. 2001 Aug;25(2):150-5.

PMID:
11509323
7.

Hypoxic stress exacerbates hyperoxia-induced lung injury in a neonatal mouse model of bronchopulmonary dysplasia.

Ratner V, Slinko S, Utkina-Sosunova I, Starkov A, Polin RA, Ten VS.

Neonatology. 2009;95(4):299-305. doi: 10.1159/000178798. Epub 2008 Dec 4.

8.

Changes in pulmonary tissue structure and KL-6/MUC1 expression in a newborn rat model of hyperoxia-induced bronchopulmonary dysplasia.

Zhu Y, Fu J, You K, Jin L, Wang M, Lu D, Xue X.

Exp Lung Res. 2013 Dec;39(10):417-26. doi: 10.3109/01902148.2013.810795.

PMID:
24298937
9.

Functional assessment of hyperoxia-induced lung injury after preterm birth in the rabbit.

Richter J, Toelen J, Vanoirbeek J, Kakigano A, Dekoninck P, Verbeken E, Deprest J.

Am J Physiol Lung Cell Mol Physiol. 2014 Feb;306(3):L277-83. doi: 10.1152/ajplung.00315.2013. Epub 2013 Dec 27.

10.

Altered small airways in aged mice following neonatal exposure to hyperoxic gas.

O'Reilly M, Harding R, Sozo F.

Neonatology. 2014;105(1):39-45. doi: 10.1159/000355641. Epub 2013 Nov 19.

PMID:
24281398
11.

Systemic hydrogen sulfide administration partially restores normal alveolarization in an experimental animal model of bronchopulmonary dysplasia.

Madurga A, Mižíková I, Ruiz-Camp J, Vadász I, Herold S, Mayer K, Fehrenbach H, Seeger W, Morty RE.

Am J Physiol Lung Cell Mol Physiol. 2014 Apr 1;306(7):L684-97. doi: 10.1152/ajplung.00361.2013. Epub 2014 Feb 7.

12.

Exposure to cyclic oxygen sufficient for development of oxygen-induced retinopathy does not induce bronchopulmonary dysplasia in rats.

Klebe S, Wijngaarden Pv, Melville T, Lipsett J, Smet HD, Coster D, Williams KA.

Exp Lung Res. 2010 Apr;36(3):175-82. doi: 10.3109/01902140903258904.

PMID:
20334604
13.

Amelioration of hyperoxia-induced lung injury using a sphingolipid-based intervention.

Tibboel J, Joza S, Reiss I, de Jongste JC, Post M.

Eur Respir J. 2013 Sep;42(3):776-84. doi: 10.1183/09031936.00092212. Epub 2012 Nov 8.

14.

Mechanical ventilation causes pulmonary mitochondrial dysfunction and delayed alveolarization in neonatal mice.

Ratner V, Sosunov SA, Niatsetskaya ZV, Utkina-Sosunova IV, Ten VS.

Am J Respir Cell Mol Biol. 2013 Dec;49(6):943-50. doi: 10.1165/rcmb.2012-0172OC.

15.

Fgf10 deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia.

Chao CM, Yahya F, Moiseenko A, Tiozzo C, Shrestha A, Ahmadvand N, El Agha E, Quantius J, Dilai S, Kheirollahi V, Jones M, Wilhem J, Carraro G, Ehrhardt H, Zimmer KP, Barreto G, Ahlbrecht K, Morty RE, Herold S, Abellar RG, Seeger W, Schermuly R, Zhang JS, Minoo P, Bellusci S.

J Pathol. 2017 Jan;241(1):91-103. doi: 10.1002/path.4834. Epub 2016 Nov 26.

PMID:
27770432
17.

Alterations of the thioredoxin system by hyperoxia: implications for alveolar development.

Tipple TE, Welty SE, Nelin LD, Hansen JM, Rogers LK.

Am J Respir Cell Mol Biol. 2009 Nov;41(5):612-9. doi: 10.1165/rcmb.2008-0224OC. Epub 2009 Feb 24.

18.

Arginyl-glutamine dipeptide or docosahexaenoic acid attenuate hyperoxia-induced lung injury in neonatal mice.

Ma L, Li N, Liu X, Shaw L, Li Calzi S, Grant MB, Neu J.

Nutrition. 2012 Nov-Dec;28(11-12):1186-91. doi: 10.1016/j.nut.2012.04.001.

PMID:
23044165
19.

Progressive Vascular Functional and Structural Damage in a Bronchopulmonary Dysplasia Model in Preterm Rabbits Exposed to Hyperoxia.

Jiménez J, Richter J, Nagatomo T, Salaets T, Quarck R, Wagennar A, Wang H, Vanoirbeek J, Deprest J, Toelen J.

Int J Mol Sci. 2016 Oct 24;17(10). pii: E1776.

20.

Cathepsin S deficiency confers protection from neonatal hyperoxia-induced lung injury.

Hirakawa H, Pierce RA, Bingol-Karakoc G, Karaaslan C, Weng M, Shi GP, Saad A, Weber E, Mariani TJ, Starcher B, Shapiro SD, Cataltepe S.

Am J Respir Crit Care Med. 2007 Oct 15;176(8):778-85. Epub 2007 Aug 2.

Supplemental Content

Support Center