Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 188

1.

Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.

Lee YJ, Yao YC, Tsai MT, Liu AF, Yang MD, Lai JT.

Opt Express. 2013 Nov 4;21 Suppl 6:A953-63. doi: 10.1364/OE.21.00A953.

PMID:
24514936
2.

Enhanced Conversion Efficiency of III-V Triple-junction Solar Cells with Graphene Quantum Dots.

Lin TN, Santiago SR, Zheng JA, Chao YC, Yuan CT, Shen JL, Wu CH, Lin CJ, Liu WR, Cheng MC, Chou WC.

Sci Rep. 2016 Dec 16;6:39163. doi: 10.1038/srep39163.

3.

Electrochemically synthesized broadband antireflective and hydrophobic GaOOH nanopillars for III-V InGaP/GaAs/Ge triple-junction solar cell applications.

Leem JW, Lee HK, Jun DH, Heo J, Park WK, Park JH, Yu JS.

Opt Express. 2014 Mar 10;22 Suppl 2:A328-34. doi: 10.1364/OE.22.00A328.

PMID:
24922242
4.
5.
6.

Hybrid inorganic-organic tandem solar cells for broad absorption of the solar spectrum.

Speirs MJ, Groeneveld BG, Protesescu L, Piliego C, Kovalenko MV, Loi MA.

Phys Chem Chem Phys. 2014 May 7;16(17):7672-6. doi: 10.1039/c4cp00846d.

PMID:
24652186
7.
8.

Effect of core quantum-dot size on power-conversion-efficiency for silicon solar-cells implementing energy-down-shift using CdSe/ZnS core/shell quantum dots.

Baek SW, Shim JH, Seung HM, Lee GS, Hong JP, Lee KS, Park JG.

Nanoscale. 2014 Nov 7;6(21):12524-31. doi: 10.1039/c4nr02472a.

PMID:
25177831
9.

Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion efficiency in UV.

Mutlugun E, Soganci IM, Demir HV.

Opt Express. 2008 Mar 17;16(6):3537-45.

PMID:
18542446
10.

Direct evaluation of influence of electron damage on the subcell performance in triple-junction solar cells using photoluminescence decays.

Tex DM, Nakamura T, Imaizumi M, Ohshima T, Kanemitsu Y.

Sci Rep. 2017 May 16;7(1):1985. doi: 10.1038/s41598-017-02141-0.

11.

Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode.

Jiang L, You T, Deng WQ.

Nanotechnology. 2013 Oct 18;24(41):415401. doi: 10.1088/0957-4484/24/41/415401. Epub 2013 Sep 17.

PMID:
24045808
12.

Numerical simulations of the current-matching effect and operation mechanisms on the performance of InGaN/Si tandem cells.

Feng SW, Lai CM, Tsai CY, Tu LW.

Nanoscale Res Lett. 2014 Dec 2;9(1):652. doi: 10.1186/1556-276X-9-652. eCollection 2014.

13.

Energy relay from an unconventional yellow dye to CdS/CdSe quantum dots for enhanced solar cell performance.

Narayanan R, Das A, Deepa M, Srivastava AK.

Chemphyschem. 2013 Dec 2;14(17):4010-21. doi: 10.1002/cphc.201300605. Epub 2013 Nov 21.

PMID:
24259302
14.

Nanoscale connectivity in a TiO2/CdSe quantum dots/functionalized graphene oxide nanosheets/Au nanoparticles composite for enhanced photoelectrochemical solar cell performance.

Narayanan R, Deepa M, Srivastava AK.

Phys Chem Chem Phys. 2012 Jan 14;14(2):767-78. doi: 10.1039/c1cp22548k. Epub 2011 Nov 22.

PMID:
22108634
15.

High-Efficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration.

Zuo L, Yu J, Shi X, Lin F, Tang W, Jen AK.

Adv Mater. 2017 Sep;29(34). doi: 10.1002/adma.201702547. Epub 2017 Jul 10.

PMID:
28692752
16.

Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers.

Chen HC, Lin CC, Han HW, Tsai YL, Chang CH, Wang HW, Tsai MA, Kuo HC, Yu P.

Opt Express. 2011 Sep 12;19 Suppl 5:A1141-7. doi: 10.1364/OE.19.0A1141.

PMID:
21935257
17.

A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization.

Han HV, Lin CC, Tsai YL, Chen HC, Chen KJ, Yeh YL, Lin WY, Kuo HC, Yu P.

Sci Rep. 2014 Jul 18;4:5734. doi: 10.1038/srep05734.

18.

Charge separation in subcells of triple-junction solar cells revealed by time-resolved photoluminescence spectroscopy.

Tex DM, Imaizumi M, Kanemitsu Y.

Opt Express. 2015 Nov 30;23(24):A1687-92. doi: 10.1364/OE.23.0A1687.

PMID:
26698814
19.

Panchromatic quantum-dot-sensitized solar cells based on a parallel tandem structure.

Zhou N, Yang Y, Huang X, Wu H, Luo Y, Li D, Meng Q.

ChemSusChem. 2013 Apr;6(4):687-92. doi: 10.1002/cssc.201200763. Epub 2013 Mar 12.

PMID:
23495072
20.

Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot.

Chen J, Lei W, Deng WQ.

Nanoscale. 2011 Feb;3(2):674-7. doi: 10.1039/c0nr00591f. Epub 2010 Dec 6.

PMID:
21132215

Supplemental Content

Support Center