Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 82

1.

Complete decoding of TAL effectors for DNA recognition.

Yang J, Zhang Y, Yuan P, Zhou Y, Cai C, Ren Q, Wen D, Chu C, Qi H, Wei W.

Cell Res. 2014 May;24(5):628-31. doi: 10.1038/cr.2014.19. Epub 2014 Feb 11. No abstract available.

2.

Recognition of methylated DNA by TAL effectors.

Deng D, Yin P, Yan C, Pan X, Gong X, Qi S, Xie T, Mahfouz M, Zhu JK, Yan N, Shi Y.

Cell Res. 2012 Oct;22(10):1502-4. doi: 10.1038/cr.2012.127. Epub 2012 Sep 4. No abstract available.

3.

Development of zinc finger domains for recognition of the 5'-ANN-3' family of DNA sequences and their use in the construction of artificial transcription factors.

Dreier B, Beerli RR, Segal DJ, Flippin JD, Barbas CF 3rd.

J Biol Chem. 2001 Aug 3;276(31):29466-78. Epub 2001 May 4.

4.

Transcriptional activators of human genes with programmable DNA-specificity.

Geissler R, Scholze H, Hahn S, Streubel J, Bonas U, Behrens SE, Boch J.

PLoS One. 2011;6(5):e19509. doi: 10.1371/journal.pone.0019509. Epub 2011 May 19.

5.

TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction.

Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK, Bogdanove AJ.

Nucleic Acids Res. 2012 Jul;40(Web Server issue):W117-22. doi: 10.1093/nar/gks608. Epub 2012 Jun 12.

6.

Chemical approaches untangling sequence-specific DNA binding by proteins.

Sato S, Hagihara M, Sugimoto K, Morii T.

Chemistry. 2002 Nov 15;8(22):5066-71. Review.

PMID:
12412056
7.

Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting.

Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF.

Nucleic Acids Res. 2011 Jul;39(12):e82. doi: 10.1093/nar/gkr218. Epub 2011 Apr 14. Erratum in: Nucleic Acids Res. 2011 Sep 1;39(17):7879.

8.

Recognition of DNA methylation by zinc fingers.

Choo Y.

Nat Struct Biol. 1998 Apr;5(4):264-5. No abstract available.

PMID:
9546213
9.

TAL effector-DNA specificity.

Scholze H, Boch J.

Virulence. 2010 Sep-Oct;1(5):428-32. doi: 10.4161/viru.1.5.12863. Review.

PMID:
21178484
10.

DNA recognition and superstructure formation by helix-turn-helix proteins.

Suzuki M, Yagi N, Gerstein M.

Protein Eng. 1995 Apr;8(4):329-38.

PMID:
7567918
11.
12.

Multi-helical DNA-binding domains: their structures and modes of DNA-binding.

Suzuki M, Suckow J, Kisters-Woike B, Aramaki H, Makino K.

Adv Biophys. 1996;32:31-52. Review. No abstract available.

PMID:
8781284
13.

DNA binding specificity of homeodomains.

Laughon A.

Biochemistry. 1991 Dec 3;30(48):11357-67. Review. No abstract available.

PMID:
1742275
14.

Toward an integrated model of protein-DNA recognition as inferred from NMR studies on the Lac repressor system.

Kalodimos CG, Boelens R, Kaptein R.

Chem Rev. 2004 Aug;104(8):3567-86. Review. No abstract available.

PMID:
15303828
15.

From transcription factors to designed sequence-specific DNA-binding peptides.

Vázquez ME, Caamaño AM, Mascareñas JL.

Chem Soc Rev. 2003 Nov;32(6):338-49. Review.

PMID:
14671789
16.

DNA binding properties of basic helix-loop-helix fusion proteins of Tal and E47.

Ghosh I, Bishop P, Chmielewski J.

J Pept Res. 2001 May;57(5):354-60.

PMID:
11350595
17.

Genetic analysis of DNA-protein interactions using a reporter gene assay in yeast.

Setzer DR, Schulman DB, Bumbulis MJ.

Methods Mol Biol. 2001;148:431-49. No abstract available.

PMID:
11357604
18.

Characterization of protein-DNA complexes by affinity cleaving.

Dervan PB.

Methods Enzymol. 1991;208:497-515. No abstract available.

PMID:
1779845
19.

Determination of nucleic acid recognition sequences by SELEX.

Bouvet P.

Methods Mol Biol. 2001;148:603-10. No abstract available.

PMID:
11357617
20.

High affinity binding sites for the Wilms' tumour suppressor protein WT1.

Hamilton TB, Barilla KC, Romaniuk PJ.

Nucleic Acids Res. 1995 Jan 25;23(2):277-84.

Supplemental Content

Support Center