Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 126

1.

Dynamical steering in an electron transfer surface reaction: oriented NO(v = 3, 0.08 < Ei < 0.89 eV) relaxation in collisions with a Au(111) surface.

Bartels N, Golibrzuch K, Bartels C, Chen L, Auerbach DJ, Wodtke AM, Schäfer T.

J Chem Phys. 2014 Feb 7;140(5):054710. doi: 10.1063/1.4863862.

PMID:
24511971
2.

Incidence energy dependent state-to-state time-of-flight measurements of NO(v = 3) collisions with Au(111): the fate of incidence vibrational and translational energy.

Golibrzuch K, Shirhatti PR, Rahinov I, Auerbach DJ, Wodtke AM, Bartels C.

Phys Chem Chem Phys. 2014 Apr 28;16(16):7602-10. doi: 10.1039/c3cp55224a.

PMID:
24637916
3.

Final rotational state distributions from NO(vi = 11) in collisions with Au(111): the magnitude of vibrational energy transfer depends on orientation in molecule-surface collisions.

Krüger BC, Bartels N, Wodtke AM, Schäfer T.

Phys Chem Chem Phys. 2016 Jun 1;18(22):14976-9. doi: 10.1039/c6cp02100j.

PMID:
27193070
4.

State-to-state time-of-flight measurements of NO scattering from Au(111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer.

Golibrzuch K, Shirhatti PR, Altschäffel J, Rahinov I, Auerbach DJ, Wodtke AM, Bartels C.

J Phys Chem A. 2013 Sep 12;117(36):8750-60. doi: 10.1021/jp403382b. Epub 2013 Jun 28.

PMID:
23808714
5.
6.

Efficient vibrational and translational excitations of a solid metal surface: State-to-state time-of-flight measurements of HCl(v=2,J=1) scattering from Au(111).

Rahinov I, Cooper R, Yuan C, Yang X, Auerbach DJ, Wodtke AM.

J Chem Phys. 2008 Dec 7;129(21):214708. doi: 10.1063/1.3028542.

PMID:
19063576
7.

Electron kinetic energies from vibrationally promoted surface exoemission: evidence for a vibrational autodetachment mechanism.

LaRue JL, Schäfer T, Matsiev D, Velarde L, Nahler NH, Auerbach DJ, Wodtke AM.

J Phys Chem A. 2011 Dec 22;115(50):14306-14. doi: 10.1021/jp205868g. Epub 2011 Nov 23.

PMID:
22112161
8.

Electron hole pair mediated vibrational excitation in CO scattering from Au(111): incidence energy and surface temperature dependence.

Shirhatti PR, Werdecker J, Golibrzuch K, Wodtke AM, Bartels C.

J Chem Phys. 2014 Sep 28;141(12):124704. doi: 10.1063/1.4894814.

PMID:
25273458
9.

Observation of direct vibrational excitation in gas-surface collisions of CO with Au(111): a new model system for surface dynamics.

Schäfer T, Bartels N, Golibrzuch K, Bartels C, Köckert H, Auerbach DJ, Kitsopoulos TN, Wodtke AM.

Phys Chem Chem Phys. 2013 Feb 14;15(6):1863-7. doi: 10.1039/c2cp43351f. Epub 2012 Dec 18.

PMID:
23247407
10.

Dynamical steering and electronic excitation in NO scattering from a gold surface.

Shenvi N, Roy S, Tully JC.

Science. 2009 Nov 6;326(5954):829-32. doi: 10.1126/science.1179240.

11.

Controlling an electron-transfer reaction at a metal surface by manipulating reactant motion and orientation.

Bartels N, Krüger BC, Auerbach DJ, Wodtke AM, Schäfer T.

Angew Chem Int Ed Engl. 2014 Dec 8;53(50):13690-4. doi: 10.1002/anie.201407051. Epub 2014 Oct 8.

PMID:
25297624
12.

Energy transfer of highly vibrationally excited azulene: collisions between azulene and krypton.

Liu CL, Hsu HC, Lyu JJ, Ni CK.

J Chem Phys. 2006 Feb 7;124(5):054302.

PMID:
16468864
13.

A new ab initio potential energy surface for studying vibrational relaxation in NO(v) + NO collisions.

Pajón-Suárez P, Rubayo-Soneira J, Hernández-Lamoneda R.

J Phys Chem A. 2011 Apr 7;115(13):2892-9. doi: 10.1021/jp200199y. Epub 2011 Mar 16.

PMID:
21410176
14.

Chemical reaction versus vibrational quenching in low energy collisions of vibrationally excited OH with O.

Pradhan GB, Juanes-Marcos JC, Balakrishnan N, Kendrick BK.

J Chem Phys. 2013 Nov 21;139(19):194305. doi: 10.1063/1.4830398.

PMID:
24320324
15.

Ultracold collisions and reactions of vibrationally excited OH radicals with oxygen atoms.

Juanes-Marcos JC, Quéméner G, Kendrick BK, Balakrishnan N.

Phys Chem Chem Phys. 2011 Nov 14;13(42):19067-76. doi: 10.1039/c1cp21141b. Epub 2011 Jun 15.

PMID:
21674116
16.

Full state-resolved energy gain profiles of CO2 from collisions with highly vibrationally excited molecules. II. Energy-dependent pyrazine (E = 32,700 and 37,900 cm(-1)) relaxation.

Du J, Sassin NA, Havey DK, Hsu K, Mullin AS.

J Phys Chem A. 2013 Nov 21;117(46):12104-15. doi: 10.1021/jp404939s. Epub 2013 Oct 30.

PMID:
24063656
17.

Energy transfer of highly vibrationally excited naphthalene: collisions with CHF3, CF4, and Kr.

Chen Hsu H, Tsai MT, Dyakov YA, Ni CK.

J Chem Phys. 2011 Aug 7;135(5):054311. doi: 10.1063/1.3622765.

PMID:
21823704
18.

Vibrationally promoted electron emission from low work-function metal surfaces.

White JD, Chen J, Matsiev D, Auerbach DJ, Wodtke AM.

J Chem Phys. 2006 Feb 14;124(6):64702.

PMID:
16483224
19.
20.

Energy-dependent dynamics of large-DeltaE collisions: highly vibrationally excited azulene (E=20 390 and 38 580 cm(-1)) with CO2.

Yuan L, Du J, Mullin AS.

J Chem Phys. 2008 Jul 7;129(1):014303. doi: 10.1063/1.2943668.

PMID:
18624476

Supplemental Content

Support Center