Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

The exact wavefunction factorization of a vibronic coupling system.

Chiang YC, Klaiman S, Otto F, Cederbaum LS.

J Chem Phys. 2014 Feb 7;140(5):054104. doi: 10.1063/1.4863315.

PMID:
24511919
2.

Correlated electron-nuclear dynamics: exact factorization of the molecular wavefunction.

Abedi A, Maitra NT, Gross EK.

J Chem Phys. 2012 Dec 14;137(22):22A530. doi: 10.1063/1.4745836.

PMID:
23249067
3.

Factorized molecular wave functions: Analysis of the nuclear factor.

Lefebvre R.

J Chem Phys. 2015 Jun 7;142(21):214105. doi: 10.1063/1.4922207.

PMID:
26049477
4.

The exact molecular wavefunction as a product of an electronic and a nuclear wavefunction.

Cederbaum LS.

J Chem Phys. 2013 Jun 14;138(22):224110. doi: 10.1063/1.4807115. Erratum in: J Chem Phys. 2014 Jul 14;141(2):029902.

PMID:
23781786
5.

Electronic non-adiabatic dynamics in enhanced ionization of isotopologues of hydrogen molecular ions from the exact factorization perspective.

Khosravi E, Abedi A, Rubio A, Maitra NT.

Phys Chem Chem Phys. 2017 Mar 22;19(12):8269-8281. doi: 10.1039/c6cp08539c.

PMID:
28277579
6.

On the applicability of a wavefunction-free, energy-based procedure for generating first-order non-adiabatic couplings around conical intersections.

Gonon B, Perveaux A, Gatti F, Lauvergnat D, Lasorne B.

J Chem Phys. 2017 Sep 21;147(11):114114. doi: 10.1063/1.4991635.

PMID:
28938825
7.

The adiabatic limit of the exact factorization of the electron-nuclear wave function.

Eich FG, Agostini F.

J Chem Phys. 2016 Aug 7;145(5):054110. doi: 10.1063/1.4959962.

PMID:
27497542
8.

Nonadiabatic Eigenfunctions Can Have Amplitude, Signed Conical Nodes, or Signed Higher Order Nodes at a Conical Intersection with Circular Symmetry.

Foster PW, Jonas DM.

J Phys Chem A. 2017 Oct 5;121(39):7401-7413. doi: 10.1021/acs.jpca.7b07140. Epub 2017 Sep 26.

PMID:
28948791
9.

On the Dynamics through a Conical Intersection.

Curchod BF, Agostini F.

J Phys Chem Lett. 2017 Feb 16;8(4):831-837. doi: 10.1021/acs.jpclett.7b00043. Epub 2017 Feb 6.

PMID:
28151670
10.

Nonadiabatic coupling vectors within linear response time-dependent density functional theory.

Tavernelli I, Tapavicza E, Rothlisberger U.

J Chem Phys. 2009 Mar 28;130(12):124107. doi: 10.1063/1.3097192.

PMID:
19334808
11.

An exact factorization perspective on quantum interferences in nonadiabatic dynamics.

Curchod BF, Agostini F, Gross EK.

J Chem Phys. 2016 Jul 21;145(3):034103. doi: 10.1063/1.4958637.

PMID:
27448870
12.

Chemical reaction dynamics beyond the Born-Oppenheimer approximation.

Butler LJ.

Annu Rev Phys Chem. 1998;49:125-71.

PMID:
15012427
13.
14.

Dynamical steps that bridge piecewise adiabatic shapes in the exact time-dependent potential energy surface.

Abedi A, Agostini F, Suzuki Y, Gross EK.

Phys Rev Lett. 2013 Jun 28;110(26):263001. Epub 2013 Jun 26.

PMID:
23848868
15.

Theory of the photodissociation of ozone in the Hartley continuum: potential energy surfaces, conical intersections, and photodissociation dynamics.

Baloïtcha E, Balint-Kurti GG.

J Chem Phys. 2005 Jul 1;123(1):014306. Erratum in: J Chem Phys. 2008 Feb 28;128(8):089901.

PMID:
16035834
16.
17.

Excited electronic states and nonadiabatic effects in contemporary chemical dynamics.

Mahapatra S.

Acc Chem Res. 2009 Aug 18;42(8):1004-15. doi: 10.1021/ar800186s.

PMID:
19456094
18.
20.

A non-adiabatic dynamics study of octatetraene: the radiationless conversion from S2 to S1.

Qu Z, Liu C.

J Chem Phys. 2013 Dec 28;139(24):244304. doi: 10.1063/1.4853715.

PMID:
24387367

Supplemental Content

Support Center