Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 108

1.

Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries.

Kang J, Mathew V, Gim J, Kim S, Song J, Im WB, Han J, Lee JY, Kim J.

Sci Rep. 2014 Feb 10;4:4047. doi: 10.1038/srep04047.

2.

Anthracite-Derived Dual-Phase Carbon-Coated Li3V2(PO4)3 as High-Performance Cathode Material for Lithium Ion Batteries.

Ding XK, Zhang LL, Yang XL, Fang H, Zhou YX, Wang JQ, Ma D.

ACS Appl Mater Interfaces. 2017 Dec 13;9(49):42788-42796. doi: 10.1021/acsami.7b14117. Epub 2017 Dec 4.

PMID:
29155556
3.

Rational Design and Facial Synthesis of Li3V2(PO4)3@C Nanocomposites Using Carbon with Different Dimensions for Ultrahigh-Rate Lithium-Ion Batteries.

Mao WF, Fu YB, Zhao H, Ai G, Dai YL, Meng D, Zhang XH, Qu D, Liu G, Battaglia VS, Tang ZY.

ACS Appl Mater Interfaces. 2015 Jun 10;7(22):12057-66. doi: 10.1021/acsami.5b02242. Epub 2015 May 29.

PMID:
25992951
4.

Bicontinuous Structure of Li₃V₂(PO₄)₃ Clustered via Carbon Nanofiber as High-Performance Cathode Material of Li-Ion Batteries.

Chen L, Yan B, Xu J, Wang C, Chao Y, Jiang X, Yang G.

ACS Appl Mater Interfaces. 2015 Jul 1;7(25):13934-43. doi: 10.1021/acsami.5b02618. Epub 2015 Jun 18.

PMID:
26053376
5.

A Bi-doped Li3V2(PO4)3/C cathode material with an enhanced high-rate capacity and long cycle stability for lithium ion batteries.

Cheng Y, Feng K, Zhou W, Zhang H, Li X, Zhang H.

Dalton Trans. 2015 Oct 28;44(40):17579-86. doi: 10.1039/c5dt03225c. Epub 2015 Sep 22.

PMID:
26391695
6.

One-Step Pyro-Synthesis of a Nanostructured Mn3 O4 /C Electrode with Long Cycle Stability for Rechargeable Lithium-Ion Batteries.

Alfaruqi MH, Gim J, Kim S, Song J, Duong PT, Jo J, Baboo JP, Xiu Z, Mathew V, Kim J.

Chemistry. 2016 Feb;22(6):2039-2045. doi: 10.1002/chem.201504609. Epub 2016 Jan 8.

PMID:
26749376
7.

Manipulating size of Li3V2(PO4)3 with reduced graphene oxide: towards high-performance composite cathode for lithium ion batteries.

Zhu X, Yan Z, Wu W, Zeng W, Du Y, Zhong Y, Zhai H, Ji H, Zhu Y.

Sci Rep. 2014 Aug 29;4:5768. doi: 10.1038/srep05768.

8.

Rapid Polyol-Assisted Microwave Synthesis of Nanocrystalline LiFePO4/C Cathode for Lithium-Ion Batteries.

Paul BJ, Gim J, Baek S, Kang J, Song J, Kim S, Kim J.

J Nanosci Nanotechnol. 2015 Aug;15(8):6168-71.

PMID:
26369219
9.

Three-dimensionally ordered macroporous Li3V2(PO4)3/C nanocomposite cathode material for high-capacity and high-rate Li-ion batteries.

Li D, Tian M, Xie R, Li Q, Fan X, Gou L, Zhao P, Ma S, Shi Y, Yong HT.

Nanoscale. 2014 Mar 21;6(6):3302-8. doi: 10.1039/c3nr04927b. Epub 2014 Feb 10.

PMID:
24510276
10.

Highly Efficient Storage of Pulse Energy Produced by Triboelectric Nanogenerator in Li3V2(PO4)3/C Cathode Li-Ion Batteries.

Nan X, Zhang C, Liu C, Liu M, Wang ZL, Cao G.

ACS Appl Mater Interfaces. 2016 Jan 13;8(1):862-70. doi: 10.1021/acsami.5b10262. Epub 2015 Dec 30.

PMID:
26681671
11.

Effect of Mn in Li3V2-xMnx(PO4)3 as High Capacity Cathodes for Lithium Batteries.

Park JS, Kim J, Park WB, Sun YK, Myung ST.

ACS Appl Mater Interfaces. 2017 Nov 22;9(46):40307-40316. doi: 10.1021/acsami.7b13128. Epub 2017 Nov 7.

PMID:
29087179
12.

Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries.

Duan W, Hu Z, Zhang K, Cheng F, Tao Z, Chen J.

Nanoscale. 2013 Jul 21;5(14):6485-90. doi: 10.1039/c3nr01617j. Epub 2013 Jun 10.

PMID:
23749042
13.

Nanorod-Nanoflake Interconnected LiMnPO4·Li3V2(PO4)3/C Composite for High-Rate and Long-Life Lithium-Ion Batteries.

Cao X, Pan A, Zhang Y, Li J, Luo Z, Yang X, Liang S, Cao G.

ACS Appl Mater Interfaces. 2016 Oct 7. [Epub ahead of print]

PMID:
27668666
14.
15.

Preparation and characterization of chlorine doped Li3V2(PO4)3 as high rate cathode active material for lithium secondary batteries.

Lee SN, Kim HS, An JY, Amaresh S, Lee YG, Nam KW, Lee YS.

J Nanosci Nanotechnol. 2014 Oct;14(10):7516-20.

PMID:
25942818
16.

An Enhanced High-Rate Na3V2(PO4)3-Ni2P Nanocomposite Cathode with Stable Lifetime for Sodium-Ion Batteries.

Song J, Park S, Mathew V, Gim J, Kim S, Jo J, Kim S, Alfaruqi MH, Baboo JP, Kim IH, Song SJ, Kim J.

ACS Appl Mater Interfaces. 2016 Dec 28;8(51):35235-35242. doi: 10.1021/acsami.6b11629. Epub 2016 Dec 15.

PMID:
27977124
17.

Li3V2(PO4)3 encapsulated flexible free-standing nanofabric cathodes for fast charging and long life-cycle lithium-ion batteries.

Sun P, Zhao X, Chen R, Chen T, Ma L, Fan Q, Lu H, Hu Y, Tie Z, Jin Z, Xu Q, Liu J.

Nanoscale. 2016 Apr 14;8(14):7408-15. doi: 10.1039/c5nr08832a.

PMID:
26990080
18.

Carbon and RuO2 binary surface coating for the Li3V2(PO4)3 cathode material for lithium-ion batteries.

Zhang R, Zhang Y, Zhu K, Du F, Fu Q, Yang X, Wang Y, Bie X, Chen G, Wei Y.

ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12523-30. doi: 10.1021/am502387z. Epub 2014 Jul 23.

PMID:
25010184
19.

Investigation of Co-incorporated pristine and Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries.

Sun HB, Zhang LL, Yang XL, Liang G, Li Z.

Dalton Trans. 2016 Oct 21;45(39):15317-15325. Epub 2016 Aug 15.

PMID:
27524269
20.

Preparation and Electrochemical Properties of Li₃V₂(PO₄)3-xBrx/Carbon Composites as Cathode Materials for Lithium-Ion Batteries.

Cao X, Mo L, Zhu L, Xie L.

Nanomaterials (Basel). 2017 Feb 24;7(3). pii: E52. doi: 10.3390/nano7030052.

Supplemental Content

Support Center