Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Enhanced MRI relaxivity of aquated Gd3+ ions by carboxyphenylated water-dispersed graphene nanoribbons.

Gizzatov A, Keshishian V, Guven A, Dimiev AM, Qu F, Muthupillai R, Decuzzi P, Bryant RG, Tour JM, Wilson LJ.

Nanoscale. 2014 Mar 21;6(6):3059-63. doi: 10.1039/c3nr06026h. Epub 2014 Feb 6.

PMID:
24504060
2.

Relaxivity enhancement of aquated Tris(β-diketonate)gadolinium(III) chelates by confinement within ultrashort single-walled carbon nanotubes.

Law JJ, Guven A, Wilson LJ.

Contrast Media Mol Imaging. 2014 Nov-Dec;9(6):409-12. doi: 10.1002/cmmi.1603. Epub 2014 Apr 25.

3.

Graphene oxide based theranostic platform for T1-weighted magnetic resonance imaging and drug delivery.

Zhang M, Cao Y, Chong Y, Ma Y, Zhang H, Deng Z, Hu C, Zhang Z.

ACS Appl Mater Interfaces. 2013 Dec 26;5(24):13325-32. doi: 10.1021/am404292e. Epub 2013 Dec 12.

PMID:
24313343
4.

A new class of Gd-based DO3A-ethylamine-derived targeted contrast agents for MR and optical imaging.

Mishra A, Pfeuffer J, Mishra R, Engelmann J, Mishra AK, Ugurbil K, Logothetis NK.

Bioconjug Chem. 2006 May-Jun;17(3):773-80.

PMID:
16704217
5.

Noncovalent functionalization of carbon nanotubes with amphiphilic gd3+ chelates: toward powerful t1 and t2 MRI contrast agents.

Richard C, Doan BT, Beloeil JC, Bessodes M, Tóth E, Scherman D.

Nano Lett. 2008 Jan;8(1):232-6. Epub 2007 Dec 19.

PMID:
18088153
6.

Gold nanoparticles functionalised with stable, fast water exchanging Gd3+ chelates as high relaxivity contrast agents for MRI.

Ferreira MF, Mousavi B, Ferreira PM, Martins CI, Helm L, Martins JA, Geraldes CF.

Dalton Trans. 2012 May 14;41(18):5472-5. doi: 10.1039/c2dt30388d. Epub 2012 Mar 30.

PMID:
22467054
7.

Contrast agents: magnetic resonance.

Burtea C, Laurent S, Vander Elst L, Muller RN.

Handb Exp Pharmacol. 2008;(185 Pt 1):135-65. doi: 10.1007/978-3-540-72718-7_7. Review.

PMID:
18626802
8.

Physicochemical characterization, and relaxometry studies of micro-graphite oxide, graphene nanoplatelets, and nanoribbons.

Paratala BS, Jacobson BD, Kanakia S, Francis LD, Sitharaman B.

PLoS One. 2012;7(6):e38185. doi: 10.1371/journal.pone.0038185. Epub 2012 Jun 7.

9.

Superparamagnetic gadonanotubes are high-performance MRI contrast agents.

Sitharaman B, Kissell KR, Hartman KB, Tran LA, Baikalov A, Rusakova I, Sun Y, Khant HA, Ludtke SJ, Chiu W, Laus S, Tóth E, Helm L, Merbach AE, Wilson LJ.

Chem Commun (Camb). 2005 Aug 21;(31):3915-7. Epub 2005 Jul 8.

PMID:
16075070
10.

A novel gadolinium-based trimetasphere metallofullerene for application as a magnetic resonance imaging contrast agent.

Adiseshaiah P, Dellinger A, MacFarland D, Stern S, Dobrovolskaia M, Ileva L, Patri AK, Bernardo M, Brooks DB, Zhou Z, McNeil S, Kepley C.

Invest Radiol. 2013 Nov;48(11):745-54. doi: 10.1097/RLI.0b013e318294de5d.

PMID:
23748228
11.

Gadolinium(III)-loaded nanoparticulate zeolites as potential high-field MRI contrast agents: relationship between structure and relaxivity.

Csajbók E, Bányai I, Vander Elst L, Muller RN, Zhou W, Peters JA.

Chemistry. 2005 Aug 5;11(16):4799-807.

PMID:
15929138
12.

Biocompatible nanotemplate-engineered nanoparticles containing gadolinium: stability and relaxivity of a potential MRI contrast agent.

Zhu D, White RD, Hardy PA, Weerapreeyakul N, Sutthanut K, Jay M.

J Nanosci Nanotechnol. 2006 Apr;6(4):996-1003.

PMID:
16736756
13.

The relaxivity of Gd-EOB-DTPA and Gd-DTPA in liver and kidney of the Wistar rat.

Shuter B, Tofts PS, Wang SC, Pope JM.

Magn Reson Imaging. 1996;14(3):243-53.

PMID:
8725190
14.

A starburst-shaped heterometallic compound incorporating six densely packed gd(3+) ions.

Livramento JB, Sour A, Borel A, Merbach AE, Tóth E.

Chemistry. 2006 Jan 23;12(4):989-1003.

PMID:
16311990
15.

Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths.

Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ.

Invest Radiol. 2005 Nov;40(11):715-24.

PMID:
16230904
16.

Design and synthesis of calcium responsive magnetic resonance imaging agent: Its relaxation and luminescence studies.

Tanwar J, Datta A, Chauhan K, Kumaran SS, Tiwari AK, Kadiyala KG, Pal S, Thirumal M, Mishra AK.

Eur J Med Chem. 2014 Jul 23;82:225-32. doi: 10.1016/j.ejmech.2014.05.046. Epub 2014 May 20.

PMID:
24904969
17.

Gd(DO3A-N-alpha-aminopropionate): a versatile and easily available synthon with optimized water exchange for the synthesis of high relaxivity, targeted MRI contrast agents.

Ferreira MF, Martins AF, Martins JA, Ferreira PM, Tóth E, Geraldes CF.

Chem Commun (Camb). 2009 Nov 14;(42):6475-7. doi: 10.1039/b912201j. Epub 2009 Sep 9.

PMID:
19841814
18.

Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action.

Caravan P.

Acc Chem Res. 2009 Jul 21;42(7):851-62. doi: 10.1021/ar800220p.

PMID:
19222207
19.

Physicochemical characterization of a novel graphene-based magnetic resonance imaging contrast agent.

Kanakia S, Toussaint JD, Chowdhury SM, Lalwani G, Tembulkar T, Button T, Shroyer KR, Moore W, Sitharaman B.

Int J Nanomedicine. 2013;8:2821-33. doi: 10.2147/IJN.S47062. Epub 2013 Aug 5.

20.

Magnetic-fluorescent nanohybrids of carbon nanotubes coated with Eu, Gd co-doped LaF3 as a multimodal imaging probe.

Chen B, Zhang H, Du N, Zhang B, Wu Y, Shi D, Yang D.

J Colloid Interface Sci. 2012 Feb 1;367(1):61-6. doi: 10.1016/j.jcis.2011.08.084. Epub 2011 Sep 24.

PMID:
22005345

Supplemental Content

Support Center