Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Solution structure of calmodulin bound to the binding domain of the HIV-1 matrix protein.

Vlach J, Samal AB, Saad JS.

J Biol Chem. 2014 Mar 21;289(12):8697-705. doi: 10.1074/jbc.M113.543694.

2.

NMR, biophysical, and biochemical studies reveal the minimal Calmodulin binding domain of the HIV-1 matrix protein.

Samal AB, Ghanam RH, Fernandez TF, Monroe EB, Saad JS.

J Biol Chem. 2011 Sep 23;286(38):33533-43. doi: 10.1074/jbc.M111.273623.

3.

Calmodulin disrupts the structure of the HIV-1 MA protein.

Chow JY, Jeffries CM, Kwan AH, Guss JM, Trewhella J.

J Mol Biol. 2010 Jul 23;400(4):702-14. doi: 10.1016/j.jmb.2010.05.022. Erratum in: J Mol Biol. 2011 Oct 28;413(3):742.

4.

Calmodulin binds a highly extended HIV-1 MA protein that refolds upon its release.

Taylor JE, Chow JY, Jeffries CM, Kwan AH, Duff AP, Hamilton WA, Trewhella J.

Biophys J. 2012 Aug 8;103(3):541-9. doi: 10.1016/j.bpj.2012.06.042.

5.

Solution X-ray scattering reveals a novel structure of calmodulin complexed with a binding domain peptide from the HIV-1 matrix protein p17.

Izumi Y, Watanabe H, Watanabe N, Aoyama A, Jinbo Y, Hayashi N.

Biochemistry. 2008 Jul 8;47(27):7158-66. doi: 10.1021/bi702416b.

PMID:
18553937
6.

Myristate exposure in the human immunodeficiency virus type 1 matrix protein is modulated by pH.

Fledderman EL, Fujii K, Ghanam RH, Waki K, Prevelige PE, Freed EO, Saad JS.

Biochemistry. 2010 Nov 9;49(44):9551-62. doi: 10.1021/bi101245j.

7.

Binding of calmodulin to the HIV-1 matrix protein triggers myristate exposure.

Ghanam RH, Fernandez TF, Fledderman EL, Saad JS.

J Biol Chem. 2010 Dec 31;285(53):41911-20. doi: 10.1074/jbc.M110.179093.

8.

Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation.

Barros M, Heinrich F, Datta SA, Rein A, Karageorgos I, Nanda H, Lösche M.

J Virol. 2016 Apr 14;90(9):4544-55. doi: 10.1128/JVI.02820-15.

9.

Retrovirus-specific differences in matrix and nucleocapsid protein-nucleic acid interactions: implications for genomic RNA packaging.

Sun M, Grigsby IF, Gorelick RJ, Mansky LM, Musier-Forsyth K.

J Virol. 2014 Jan;88(2):1271-80. doi: 10.1128/JVI.02151-13.

10.

Elucidating the mechanism by which compensatory mutations rescue an HIV-1 matrix mutant defective for gag membrane targeting and envelope glycoprotein incorporation.

Tedbury PR, Mercredi PY, Gaines CR, Summers MF, Freed EO.

J Mol Biol. 2015 Mar 27;427(6 Pt B):1413-27. doi: 10.1016/j.jmb.2015.01.018.

11.

Membrane-induced alterations in HIV-1 Gag and matrix protein-protein interactions.

Scarlata S, Ehrlich LS, Carter CA.

J Mol Biol. 1998 Mar 27;277(2):161-9.

PMID:
9514761
12.

RNA aptamers directed to human immunodeficiency virus type 1 Gag polyprotein bind to the matrix and nucleocapsid domains and inhibit virus production.

Ramalingam D, Duclair S, Datta SA, Ellington A, Rein A, Prasad VR.

J Virol. 2011 Jan;85(1):305-14. doi: 10.1128/JVI.02626-09.

13.

Simian immunodeficiency virus and human immunodeficiency virus type 1 matrix proteins specify different capabilities to modulate B cell growth.

Caccuri F, Giagulli C, Reichelt J, Martorelli D, Marsico S, Bugatti A, Barone I, Rusnati M, Guzman CA, Dolcetti R, Caruso A.

J Virol. 2014 May;88(10):5706-17. doi: 10.1128/JVI.03142-13.

14.
15.

Mapping of immunogenic and protein-interacting regions at the surface of the seven-bladed beta-propeller domain of the HIV-1 cellular interactor EED.

Rakotobe D, Violot S, Hong SS, Gouet P, Boulanger P.

Virol J. 2008 Feb 27;5:32. doi: 10.1186/1743-422X-5-32.

16.
17.

Selective acquisition of host-derived ICAM-1 by HIV-1 is a matrix-dependent process.

Jalaguier P, Cantin R, Maaroufi H, Tremblay MJ.

J Virol. 2015 Jan;89(1):323-36. doi: 10.1128/JVI.02701-14.

18.

Roles played by acidic lipids in HIV-1 Gag membrane binding.

Olety B, Ono A.

Virus Res. 2014 Nov 26;193:108-15. doi: 10.1016/j.virusres.2014.06.015. Review.

19.

Electrostatic interactions and binding orientation of HIV-1 matrix studied by neutron reflectivity.

Nanda H, Datta SA, Heinrich F, Lösche M, Rein A, Krueger S, Curtis JE.

Biophys J. 2010 Oct 20;99(8):2516-24. doi: 10.1016/j.bpj.2010.07.062.

20.

Supplemental Content

Support Center