Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 130

1.

Candida albicans utilizes a modified β-oxidation pathway for the degradation of toxic propionyl-CoA.

Otzen C, Bardl B, Jacobsen ID, Nett M, Brock M.

J Biol Chem. 2014 Mar 21;289(12):8151-69. doi: 10.1074/jbc.M113.517672.

2.

Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans.

Piekarska K, Mol E, van den Berg M, Hardy G, van den Burg J, van Roermund C, MacCallum D, Odds F, Distel B.

Eukaryot Cell. 2006 Nov;5(11):1847-56.

3.

Role of acetyl coenzyme A synthesis and breakdown in alternative carbon source utilization in Candida albicans.

Carman AJ, Vylkova S, Lorenz MC.

Eukaryot Cell. 2008 Oct;7(10):1733-41. doi: 10.1128/EC.00253-08.

4.
6.

Carnitine-dependent transport of acetyl coenzyme A in Candida albicans is essential for growth on nonfermentable carbon sources and contributes to biofilm formation.

Strijbis K, van Roermund CW, Visser WF, Mol EC, van den Burg J, MacCallum DM, Odds FC, Paramonova E, Krom BP, Distel B.

Eukaryot Cell. 2008 Apr;7(4):610-8. doi: 10.1128/EC.00017-08.

7.
8.

Peroxisomal metabolism of propionic acid and isobutyric acid in plants.

Lucas KA, Filley JR, Erb JM, Graybill ER, Hawes JW.

J Biol Chem. 2007 Aug 24;282(34):24980-9.

9.

Rhodobacter sphaeroides uses a reductive route via propionyl coenzyme A to assimilate 3-hydroxypropionate.

Schneider K, Asao M, Carter MS, Alber BE.

J Bacteriol. 2012 Jan;194(2):225-32. doi: 10.1128/JB.05959-11.

10.

Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids.

Savvi S, Warner DF, Kana BD, McKinney JD, Mizrahi V, Dawes SS.

J Bacteriol. 2008 Jun;190(11):3886-95. doi: 10.1128/JB.01767-07.

11.

Characterization of an acyl-CoA: carboxylate CoA-transferase from Aspergillus nidulans involved in propionyl-CoA detoxification.

Fleck CB, Brock M.

Mol Microbiol. 2008 May;68(3):642-56. doi: 10.1111/j.1365-2958.2008.06180.x.

12.

Mitochondrial beta-oxidation of 2-methyl fatty acids in rat liver.

Mao LF, Chu C, Luo MJ, Simon A, Abbas AS, Schulz H.

Arch Biochem Biophys. 1995 Aug 1;321(1):221-8.

PMID:
7639525
13.

Phylogenetic and phenotypic characterisation of the 3-ketoacyl-CoA thiolase gene family from the opportunistic human pathogenic fungus Candida albicans.

Otzen C, Müller S, Jacobsen ID, Brock M.

FEMS Yeast Res. 2013 Sep;13(6):553-64. doi: 10.1111/1567-1364.12057.

14.

Peroxisomal lipid degradation via beta- and alpha-oxidation in mammals.

Mannaerts GP, Van Veldhoven PP, Casteels M.

Cell Biochem Biophys. 2000;32 Spring:73-87. Review.

PMID:
11330072
15.

Methylcitrate cycle activation during adaptation of Fusarium solani and Fusarium verticillioides to propionyl-CoA-generating carbon sources.

Domin N, Wilson D, Brock M.

Microbiology. 2009 Dec;155(Pt 12):3903-12. doi: 10.1099/mic.0.031781-0.

PMID:
19661181
16.
18.
19.

3-Hydroxypropionyl-coenzyme A synthetase from Metallosphaera sedula, an enzyme involved in autotrophic CO2 fixation.

Alber BE, Kung JW, Fuchs G.

J Bacteriol. 2008 Feb;190(4):1383-9. doi: 10.1128/JB.01593-07.

20.

Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress.

Lee W, VanderVen BC, Fahey RJ, Russell DG.

J Biol Chem. 2013 Mar 8;288(10):6788-800. doi: 10.1074/jbc.M112.445056.

Supplemental Content

Support Center