Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 75

1.

A facile solution route to deposit TiO2 nanowire arrays on arbitrary substrates.

Li B, Wu JM, Guo TT, Tang MZ, Wen W.

Nanoscale. 2014 Mar 21;6(6):3046-50. doi: 10.1039/c3nr05786k. Epub 2014 Feb 4.

PMID:
24496503
2.

Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications.

Feng X, Shankar K, Varghese OK, Paulose M, Latempa TJ, Grimes CA.

Nano Lett. 2008 Nov;8(11):3781-6. doi: 10.1021/nl802096a. Epub 2008 Oct 28.

PMID:
18954124
3.

Dye-sensitized solar cells with vertically aligned TiO2 nanowire arrays grown on carbon fibers.

Cai X, Wu H, Hou S, Peng M, Yu X, Zou D.

ChemSusChem. 2014 Feb;7(2):474-82. doi: 10.1002/cssc.201301020. Epub 2013 Dec 20.

PMID:
24488679
4.

One-step synthesis of vertically aligned anatase thornbush-like TiO2 nanowire arrays on transparent conducting oxides for solid-state dye-sensitized solar cells.

Roh DK, Chi WS, Ahn SH, Jeon H, Kim JH.

ChemSusChem. 2013 Aug;6(8):1384-91. doi: 10.1002/cssc.201300317. Epub 2013 Jul 26.

PMID:
23893968
5.

A substrate-integrated and scalable templated approach based on rusted steel for the fabrication of polypyrrole nanotube arrays.

Velazquez JM, Gaikwad AV, Rout TK, Rzayev J, Banerjee S.

ACS Appl Mater Interfaces. 2011 Apr;3(4):1238-44. doi: 10.1021/am2000533. Epub 2011 Mar 22.

PMID:
21425803
6.

Strong localized surface plasmon resonance effects of Ag/TiO2 core-shell nanowire arrays in UV and visible light for photocatalytic activity.

Eom H, Jung JY, Shin Y, Kim S, Choi JH, Lee E, Jeong JH, Park I.

Nanoscale. 2014 Jan 7;6(1):226-34. doi: 10.1039/c3nr04388f. Epub 2013 Oct 28.

PMID:
24165876
7.

Effective utilization of visible light (including lambda > 600 nm) in phenol degradation with p-silicon nanowire/TiO2 core/shell heterojunction array cathode.

Yu H, Li X, Quan X, Chen S, Zhang Y.

Environ Sci Technol. 2009 Oct 15;43(20):7849-55. doi: 10.1021/es901467g.

PMID:
19921904
8.

Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries.

Shim HW, Lee DK, Cho IS, Hong KS, Kim DW.

Nanotechnology. 2010 Jun 25;21(25):255706. doi: 10.1088/0957-4484/21/25/255706. Epub 2010 Jun 2.

PMID:
20516576
9.

Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays.

Wei Y, Wu W, Guo R, Yuan D, Das S, Wang ZL.

Nano Lett. 2010 Sep 8;10(9):3414-9. doi: 10.1021/nl1014298.

PMID:
20681617
10.

Air-bridged Ohmic contact on vertically aligned si nanowire arrays: application to molecule sensors.

Han H, Kim J, Shin HS, Song JY, Lee W.

Adv Mater. 2012 May 2;24(17):2284-8. doi: 10.1002/adma.201200347. Epub 2012 Apr 13.

PMID:
22499387
11.

High-sensitivity accelerometer composed of ultra-long vertically aligned barium titanate nanowire arrays.

Koka A, Sodano HA.

Nat Commun. 2013;4:2682. doi: 10.1038/ncomms3682.

PMID:
24177706
12.

Silicon oxide nanowires: facile and controlled large area fabrication of vertically oriented silicon oxide nanowires for photoluminescence and sensor applications.

Alabi TR, Yuan D, Bucknall D, Das S.

ACS Appl Mater Interfaces. 2013 Sep 25;5(18):8932-8. doi: 10.1021/am401787c. Epub 2013 Sep 3.

PMID:
23915216
13.

Vertically aligned arrays of BaTiO(3) nanowires.

Zhou Z, Tang H, Sodano HA.

ACS Appl Mater Interfaces. 2013 Nov 27;5(22):11894-9. doi: 10.1021/am403587q. Epub 2013 Nov 18.

PMID:
24191721
14.

Patterned growth of vertically aligned organic nanowire waveguide arrays.

Zhao YS, Zhan P, Kim J, Sun C, Huang J.

ACS Nano. 2010 Mar 23;4(3):1630-6. doi: 10.1021/nn901567z.

PMID:
20143788
15.

Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires.

Wen X, Wang S, Ding Y, Wang ZL, Yang S.

J Phys Chem B. 2005 Jan 13;109(1):215-20.

PMID:
16851007
16.

Semiconductor nanowires directly grown on graphene--towards wafer scale transferable nanowire arrays with improved electrical contact.

Alper JP, Gutes A, Carraro C, Maboudian R.

Nanoscale. 2013 May 21;5(10):4114-8. doi: 10.1039/c3nr00367a.

PMID:
23563903
17.

Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires.

Ozdemir B, Kulakci M, Turan R, Unalan HE.

Nanotechnology. 2011 Apr 15;22(15):155606. doi: 10.1088/0957-4484/22/15/155606. Epub 2011 Mar 10.

PMID:
21389572
19.

Facile solution route to vertically aligned, selective growth of ZnO nanostructure arrays.

Wang CH, Wong AS, Ho GW.

Langmuir. 2007 Nov 20;23(24):11960-3. Epub 2007 Oct 17.

PMID:
17941655
20.

A gas-solid reaction growth of dense TiO2 nanowire arrays on Ti foils at ambient atmosphere.

Wei Z, Liu Y, Wang H, Mei Z, Ye J, Wen X, Gu L, Xie Y.

J Nanosci Nanotechnol. 2012 Jan;12(1):316-23.

PMID:
22523981

Supplemental Content

Support Center