Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly.

Bai H, Polini A, Delattre B, Tomsia AP.

Chem Mater. 2013 Oct 26;25(22):4551-4556.

2.

Platelets self-assemble into porous nacre during freeze casting.

Hunger PM, Donius AE, Wegst UG.

J Mech Behav Biomed Mater. 2013 Mar;19:87-93. doi: 10.1016/j.jmbbm.2012.10.013. Epub 2012 Nov 3.

PMID:
23313642
3.

Nacre-inspired nanocomposites produced using layer-by-layer assembly: Design strategies and biomedical applications.

Rodrigues JR, Alves NM, Mano JF.

Mater Sci Eng C Mater Biol Appl. 2017 Jul 1;76:1263-1273. doi: 10.1016/j.msec.2017.02.043. Epub 2017 Feb 16. Review.

PMID:
28482494
4.

Novel Biocompatible Thermoresponsive Poly(N-vinyl Caprolactam)/Clay Nanocomposite Hydrogels with Macroporous Structure and Improved Mechanical Characteristics.

Shi K, Liu Z, Yang C, Li XY, Sun YM, Deng Y, Wang W, Ju XJ, Xie R, Chu LY.

ACS Appl Mater Interfaces. 2017 Jul 5;9(26):21979-21990. doi: 10.1021/acsami.7b04552. Epub 2017 Jun 23.

PMID:
28603958
5.

Bioinspired Hydroxyapatite/Poly(methyl methacrylate) Composite with a Nacre-Mimetic Architecture by a Bidirectional Freezing Method.

Bai H, Walsh F, Gludovatz B, Delattre B, Huang C, Chen Y, Tomsia AP, Ritchie RO.

Adv Mater. 2016 Jan 6;28(1):50-6. doi: 10.1002/adma.201504313. Epub 2015 Nov 10.

PMID:
26554760
6.

Bioinspired large-scale aligned porous materials assembled with dual temperature gradients.

Bai H, Chen Y, Delattre B, Tomsia AP, Ritchie RO.

Sci Adv. 2015 Dec 11;1(11):e1500849. doi: 10.1126/sciadv.1500849. eCollection 2015 Dec.

7.

25th anniversary article: Artificial carbonate nanocrystals and layered structural nanocomposites inspired by nacre: synthesis, fabrication and applications.

Yao HB, Ge J, Mao LB, Yan YX, Yu SH.

Adv Mater. 2014 Jan 8;26(1):163-87. doi: 10.1002/adma.201303470. Epub 2013 Dec 12. Review.

PMID:
24338814
8.

Binary Synergy Strengthening and Toughening of Bio-Inspired Nacre-like Graphene Oxide/Sodium Alginate Composite Paper.

Chen K, Shi B, Yue Y, Qi J, Guo L.

ACS Nano. 2015 Aug 25;9(8):8165-75. doi: 10.1021/acsnano.5b02333. Epub 2015 Jul 28.

PMID:
26167700
9.

Superstretchable Nacre-Mimetic Graphene/Poly(vinyl alcohol) Composite Film Based on Interfacial Architectural Engineering.

Zhao N, Yang M, Zhao Q, Gao W, Xie T, Bai H.

ACS Nano. 2017 May 23;11(5):4777-4784. doi: 10.1021/acsnano.7b01089. Epub 2017 Apr 27.

PMID:
28445032
10.

Nacre-like materials using a simple doctor blading technique: Fabrication, testing and modeling.

Mirkhalaf M, Barthelat F.

J Mech Behav Biomed Mater. 2016 Mar;56:23-33. doi: 10.1016/j.jmbbm.2015.11.010. Epub 2015 Dec 1.

PMID:
26655459
11.

Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels.

Köhnke T, Elder T, Theliander H, Ragauskas AJ.

Carbohydr Polym. 2014 Jan 16;100:24-30. doi: 10.1016/j.carbpol.2013.03.060. Epub 2013 Mar 26.

PMID:
24188834
12.

Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels.

Huang L, Li C, Yuan W, Shi G.

Nanoscale. 2013 May 7;5(9):3780-6. doi: 10.1039/c3nr00196b. Epub 2013 Mar 28.

PMID:
23538717
13.

A General Route to Robust Nacre-Like Graphene Oxide Films.

Tan Z, Zhang M, Li C, Yu S, Shi G.

ACS Appl Mater Interfaces. 2015 Jul 15;7(27):15010-6. doi: 10.1021/acsami.5b04093. Epub 2015 Jul 2.

PMID:
26111943
14.

Fabrication of electrospun poly(L-lactide-co-ε-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering.

Xu Y, Wu J, Wang H, Li H, Di N, Song L, Li S, Li D, Xiang Y, Liu W, Mo X, Zhou Q.

Tissue Eng Part C Methods. 2013 Dec;19(12):925-36. doi: 10.1089/ten.TEC.2012.0328. Epub 2013 May 21.

15.

Toughening of Thermoresponsive Arrested Networks of Elastin-Like Polypeptides To Engineer Cytocompatible Tissue Scaffolds.

Glassman MJ, Avery RK, Khademhosseini A, Olsen BD.

Biomacromolecules. 2016 Feb 8;17(2):415-26. doi: 10.1021/acs.biomac.5b01210. Epub 2016 Jan 20.

16.

Improving surface and transport properties of macroporous hydrogels for bone regeneration.

Guarino V, Galizia M, Alvarez-Perez M, Mensitieri G, Ambrosio L.

J Biomed Mater Res A. 2015 Mar;103(3):1095-105. doi: 10.1002/jbm.a.35246. Epub 2014 Jun 18.

PMID:
24890434
17.

Fabrication of porous gelatin scaffolds for tissue engineering.

Kang HW, Tabata Y, Ikada Y.

Biomaterials. 1999 Jul;20(14):1339-44.

PMID:
10403052
18.

A bio-inspired, microchanneled hydrogel with controlled spacing of cell adhesion ligands regulates 3D spatial organization of cells and tissue.

Lee MK, Rich MH, Lee J, Kong H.

Biomaterials. 2015 Jul;58:26-34. doi: 10.1016/j.biomaterials.2015.04.014. Epub 2015 Apr 29.

PMID:
25941779
19.

Three-Dimensional-Printing of Bio-Inspired Composites.

Xiang Gu G, Su I, Sharma S, Voros JL, Qin Z, Buehler MJ.

J Biomech Eng. 2016 Feb;138(2):021006. doi: 10.1115/1.4032423. Review.

20.

A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering.

Hammer J, Han LH, Tong X, Yang F.

Tissue Eng Part C Methods. 2014 Feb;20(2):169-76. doi: 10.1089/ten.TEC.2013.0176. Epub 2013 Jul 17.

PMID:
23745610

Supplemental Content

Support Center