Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Negative selection and stringency modulation in phage-assisted continuous evolution.

Carlson JC, Badran AH, Guggiana-Nilo DA, Liu DR.

Nat Chem Biol. 2014 Mar;10(3):216-22. doi: 10.1038/nchembio.1453. Epub 2014 Feb 2.

2.

A system for the continuous directed evolution of biomolecules.

Esvelt KM, Carlson JC, Liu DR.

Nature. 2011 Apr 28;472(7344):499-503. doi: 10.1038/nature09929. Epub 2011 Apr 10.

3.

A population-based experimental model for protein evolution: effects of mutation rate and selection stringency on evolutionary outcomes.

Leconte AM, Dickinson BC, Yang DD, Chen IA, Allen B, Liu DR.

Biochemistry. 2013 Feb 26;52(8):1490-9. doi: 10.1021/bi3016185. Epub 2013 Feb 14.

4.

A combined in vitro/in vivo selection for polymerases with novel promoter specificities.

Chelliserrykattil J, Cai G, Ellington AD.

BMC Biotechnol. 2001;1:13. Epub 2001 Dec 28.

5.

A promoter recognition mechanism common to yeast mitochondrial and phage t7 RNA polymerases.

Nayak D, Guo Q, Sousa R.

J Biol Chem. 2009 May 15;284(20):13641-7. doi: 10.1074/jbc.M900718200. Epub 2009 Mar 23.

6.

Compensatory evolution in response to a novel RNA polymerase: orthologous replacement of a central network gene.

Bull JJ, Springman R, Molineux IJ.

Mol Biol Evol. 2007 Apr;24(4):900-8. Epub 2007 Jan 13.

PMID:
17220516
7.
8.

In vitro selection of bacteriophage promoters employing a terminally capped template DNA and a streptavidin-binding aptamer.

Ohuchi S.

J Biosci Bioeng. 2012 Jul;114(1):110-2. doi: 10.1016/j.jbiosc.2012.02.017. Epub 2012 May 3.

PMID:
22560719
9.

Generation of sequence variants via accelerated molecular evolution methods.

Fu M, Zhang X, Lai X, Wu X, Feng F, Peng J, Zhong H, Zhang Y, Wang Y, Zhou Q, Wang S, Chen L, He Z, Gao Y, Ma X, He R, Liu Q.

Recent Pat DNA Gene Seq. 2013 Aug;7(2):144-56.

PMID:
23388030
10.

A general mechanism for viral resistance to suicide gene expression.

Bull JJ, Badgett MR, Molineux IJ.

J Mol Evol. 2001 Jul;53(1):47-54.

PMID:
11683322
11.

T7 RNA polymerase mutants with altered promoter specificities.

Raskin CA, Diaz GA, McAllister WT.

Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3147-51.

12.

Evolution of bacteriophage T7 in a growing plaque.

Yin J.

J Bacteriol. 1993 Mar;175(5):1272-7.

13.

Continuous in vitro evolution of bacteriophage RNA polymerase promoters.

Breaker RR, Banerji A, Joyce GF.

Biochemistry. 1994 Oct 4;33(39):11980-6.

PMID:
7522554
14.

Phage-assisted continuous evolution of proteases with altered substrate specificity.

Packer MS, Rees HA, Liu DR.

Nat Commun. 2017 Oct 16;8(1):956. doi: 10.1038/s41467-017-01055-9.

15.
16.

Transcription yield of fully 2'-modified RNA can be increased by the addition of thermostabilizing mutations to T7 RNA polymerase mutants.

Meyer AJ, Garry DJ, Hall B, Byrom MM, McDonald HG, Yang X, Yin YW, Ellington AD.

Nucleic Acids Res. 2015 Sep 3;43(15):7480-8. doi: 10.1093/nar/gkv734. Epub 2015 Jul 24.

17.
18.

Weakening of the T7 promoter-polymerase interaction facilitates promoter release.

Guo Q, Sousa R.

J Biol Chem. 2005 Apr 15;280(15):14956-61. Epub 2005 Feb 12.

19.

Intracellular directed evolution of proteins from combinatorial libraries based on conditional phage replication.

Brödel AK, Jaramillo A, Isalan M.

Nat Protoc. 2017 Sep;12(9):1830-1843. doi: 10.1038/nprot.2017.084. Epub 2017 Aug 10.

20.

Identification of a region of the bacteriophage T3 and T7 RNA polymerases that determines promoter specificity.

Joho KE, Gross LB, McGraw NJ, Raskin C, McAllister WT.

J Mol Biol. 1990 Sep 5;215(1):31-9.

PMID:
2204707

Supplemental Content

Support Center