Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 132

1.

Mixed-order phase transition in a one-dimensional model.

Bar A, Mukamel D.

Phys Rev Lett. 2014 Jan 10;112(1):015701. Epub 2014 Jan 7.

PMID:
24483909
2.

Exact extreme-value statistics at mixed-order transitions.

Bar A, Majumdar SN, Schehr G, Mukamel D.

Phys Rev E. 2016 May;93(5):052130. doi: 10.1103/PhysRevE.93.052130. Epub 2016 May 17.

PMID:
27300852
3.

Phase transitions in a simple growth model for a driven interface in random media

Park K, Kim Im.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Sep;62(3 Pt A):3322-6.

PMID:
11088831
4.

Mixed-order phase transition in a two-step contagion model with a single infectious seed.

Choi W, Lee D, Kahng B.

Phys Rev E. 2017 Feb;95(2-1):022304. doi: 10.1103/PhysRevE.95.022304. Epub 2017 Feb 9.

PMID:
28297964
5.

Magnetic charge and ordering in kagome spin ice.

Chern GW, Tchernyshyov O.

Philos Trans A Math Phys Eng Sci. 2012 Dec 28;370(1981):5718-37. doi: 10.1098/rsta.2011.0388.

6.

Phase transition of a one-dimensional Ising model with distance-dependent connections.

Chang Y, Sun L, Cai X.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 1):021101. Epub 2007 Aug 1.

PMID:
17930000
7.

Inverse freezing in a cluster Ising spin-glass model with antiferromagnetic interactions.

Silva CF, Zimmer FM, Magalhaes SG, Lacroix C.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 1):051104. Epub 2012 Nov 5.

PMID:
23214735
8.

First-order and tricritical wetting transitions in the two-dimensional Ising model caused by interfacial pinning at a defect line.

Trobo ML, Albano EV, Binder K.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Aug;90(2):022406. Epub 2014 Aug 18.

PMID:
25215741
9.

Minimal exactly solved model with the extreme Thouless effect.

Fronczak A, Fronczak P, Krawiecki A.

Phys Rev E. 2016 Jan;93(1):012124. doi: 10.1103/PhysRevE.93.012124. Epub 2016 Jan 14.

PMID:
26871041
10.

Phase transitions and order in two-dimensional generalized nonlinear σ models.

Banerjee T, Sarkar N, Basu A.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062133. doi: 10.1103/PhysRevE.92.062133. Epub 2015 Dec 18.

PMID:
26764658
11.

Effect of diffusion in one-dimensional discontinuous absorbing phase transitions.

Fiore CE, Landi GT.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032123. Epub 2014 Sep 18.

PMID:
25314411
12.

Effective field theory for models defined over small-world networks: first- and second-order phase transitions.

Ostilli M, Mendes JF.

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 1):031102. Epub 2008 Sep 2.

PMID:
18850988
13.

Discontinuous percolation transitions in epidemic processes, surface depinning in random media, and Hamiltonian random graphs.

Bizhani G, Paczuski M, Grassberger P.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011128. Epub 2012 Jul 25.

PMID:
23005389
14.

Depinning transition and thermal fluctuations in the random-field Ising model.

Roters L, Hucht A, Lübeck S, Nowak U, Usadel KD.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Nov;60(5 Pt A):5202-7.

PMID:
11970390
15.

First-order depinning transition of a driven interface in disordered media.

Park K, Kwak S, Kim Im IM.

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 2A):035102. Epub 2002 Feb 8.

PMID:
11909137
16.

On melting dynamics and the glass transition. II. Glassy dynamics as a melting process.

Krzakala F, Zdeborová L.

J Chem Phys. 2011 Jan 21;134(3):034513. doi: 10.1063/1.3506843.

PMID:
21261374
17.

Stripe-tetragonal phase transition in the two-dimensional Ising model with dipole interactions: partition function zeros approach.

Fonseca JS, Rizzi LG, Alves NA.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011103. Epub 2012 Jul 5.

PMID:
23005364
18.

Oscillating hysteresis in the q-neighbor Ising model.

Jȩdrzejewski A, Chmiel A, Sznajd-Weron K.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):052105. doi: 10.1103/PhysRevE.92.052105. Epub 2015 Nov 5.

PMID:
26651645
19.

Modeling substorm dynamics of the magnetosphere: from self-organization and self-organized criticality to nonequilibrium phase transitions.

Sitnov MI, Sharma AS, Papadopoulos K, Vassiliadis D.

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jan;65(1 Pt 2):016116. Epub 2001 Dec 18.

PMID:
11800745
20.

Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism.

Trugenberger CA.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062818. doi: 10.1103/PhysRevE.92.062818. Epub 2015 Dec 15.

PMID:
26764755

Supplemental Content

Support Center