Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 149

1.

Mass spectrometry-based workflow for accurate quantification of Escherichia coli enzymes: how proteomics can play a key role in metabolic engineering.

Trauchessec M, Jaquinod M, Bonvalot A, Brun V, Bruley C, Ropers D, de Jong H, Garin J, Bestel-Corre G, Ferro M.

Mol Cell Proteomics. 2014 Apr;13(4):954-68. doi: 10.1074/mcp.M113.032672. Epub 2014 Jan 29.

2.

Production and use of stable isotope-labeled proteins for absolute quantitative proteomics.

Lebert D, Dupuis A, Garin J, Bruley C, Brun V.

Methods Mol Biol. 2011;753:93-115. doi: 10.1007/978-1-61779-148-2_7.

PMID:
21604118
3.

Multi-enzyme digestion FASP and the 'Total Protein Approach'-based absolute quantification of the Escherichia coli proteome.

Wiśniewski JR, Rakus D.

J Proteomics. 2014 Sep 23;109:322-31. doi: 10.1016/j.jprot.2014.07.012. Epub 2014 Jul 22.

4.

Targeted cofactor quantification in metabolically engineered E. coli using solid phase extraction and hydrophilic interaction liquid chromatography-mass spectrometry.

Li Z, Yang A, Li Y, Liu P, Zhang Z, Zhang X, Shui W.

J Chromatogr B Analyt Technol Biomed Life Sci. 2016 Mar 1;1014:107-15. doi: 10.1016/j.jchromb.2015.12.037. Epub 2015 Dec 29.

PMID:
26894684
5.

A targeted proteomics toolkit for high-throughput absolute quantification of Escherichia coli proteins.

Batth TS, Singh P, Ramakrishnan VR, Sousa MML, Chan LJG, Tran HM, Luning EG, Pan EHY, Vuu KM, Keasling JD, Adams PD, Petzold CJ.

Metab Eng. 2014 Nov;26:48-56. doi: 10.1016/j.ymben.2014.08.004. Epub 2014 Sep 7.

PMID:
25205128
6.

Peptide Biosynthesis with Stable Isotope Labeling from a Cell-free Expression System for Targeted Proteomics with Absolute Quantification.

Xian F, Zi J, Wang Q, Lou X, Sun H, Lin L, Hou G, Rao W, Yin C, Wu L, Li S, Liu S.

Mol Cell Proteomics. 2016 Aug;15(8):2819-28. doi: 10.1074/mcp.O115.056507. Epub 2016 May 27.

7.

Liquid chromatography-mass spectrometry-based quantitative proteomics.

Xie F, Liu T, Qian WJ, Petyuk VA, Smith RD.

J Biol Chem. 2011 Jul 22;286(29):25443-9. doi: 10.1074/jbc.R110.199703. Epub 2011 Jun 1. Review.

8.

A systematic investigation of Escherichia coli central carbon metabolism in response to superoxide stress.

Rui B, Shen T, Zhou H, Liu J, Chen J, Pan X, Liu H, Wu J, Zheng H, Shi Y.

BMC Syst Biol. 2010 Sep 1;4:122. doi: 10.1186/1752-0509-4-122.

9.

Evaluation of empirical rule of linearly correlated peptide selection (ERLPS) for proteotypic peptide-based quantitative proteomics.

Liu K, Zhang J, Fu B, Xie H, Wang Y, Qian X.

Proteomics. 2014 Jul;14(13-14):1593-603. doi: 10.1002/pmic.201300032. Epub 2014 Jun 11.

PMID:
24827140
10.

[Quantitative monitoring targeted proteins and intermediate metabolites in Escherichia coli primary metabolic pathways].

Cheng Y, Deng Z, Liu T.

Wei Sheng Wu Xue Bao. 2015 Nov 4;55(11):1458-67. Chinese.

PMID:
26915227
11.

Stable isotope labeling methods in protein profiling.

Lengqvist J, Sandberg A.

Methods Mol Biol. 2013;1023:21-51. doi: 10.1007/978-1-4614-7209-4_3. Review.

PMID:
23765618
12.

Protein abundance profiling of the Escherichia coli cytosol.

Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D.

BMC Genomics. 2008 Feb 27;9:102. doi: 10.1186/1471-2164-9-102.

13.

High-Performance Chemical Isotope Labeling Liquid Chromatography-Mass Spectrometry for Profiling the Metabolomic Reprogramming Elicited by Ammonium Limitation in Yeast.

Luo X, Zhao S, Huan T, Sun D, Friis RM, Schultz MC, Li L.

J Proteome Res. 2016 May 6;15(5):1602-12. doi: 10.1021/acs.jproteome.6b00070. Epub 2016 Mar 29.

PMID:
26947805
14.
15.

SILAC-based comparative analysis of pathogenic Escherichia coli secretomes.

Boysen A, Borch J, Krogh TJ, Hjernø K, Møller-Jensen J.

J Microbiol Methods. 2015 Sep;116:66-79. doi: 10.1016/j.mimet.2015.06.015. Epub 2015 Jul 2.

PMID:
26143086
16.

A practical data processing workflow for multi-OMICS projects.

Kohl M, Megger DA, Trippler M, Meckel H, Ahrens M, Bracht T, Weber F, Hoffmann AC, Baba HA, Sitek B, Schlaak JF, Meyer HE, Stephan C, Eisenacher M.

Biochim Biophys Acta. 2014 Jan;1844(1 Pt A):52-62. doi: 10.1016/j.bbapap.2013.02.029. Epub 2013 Mar 15.

17.

Translational value of liquid chromatography coupled with tandem mass spectrometry-based quantitative proteomics for in vitro-in vivo extrapolation of drug metabolism and transport and considerations in selecting appropriate techniques.

Al Feteisi H, Achour B, Rostami-Hodjegan A, Barber J.

Expert Opin Drug Metab Toxicol. 2015;11(9):1357-69. doi: 10.1517/17425255.2015.1055245. Epub 2015 Jun 26. Review.

PMID:
26108733
18.

Critical assessment of proteome-wide label-free absolute abundance estimation strategies.

Ahrné E, Molzahn L, Glatter T, Schmidt A.

Proteomics. 2013 Sep;13(17):2567-78. doi: 10.1002/pmic.201300135. Epub 2013 Jul 30.

PMID:
23794183
19.

SRM/MRM targeted proteomics as a tool for biomarker validation and absolute quantification in human urine.

Mermelekas G, Vlahou A, Zoidakis J.

Expert Rev Mol Diagn. 2015;15(11):1441-54. doi: 10.1586/14737159.2015.1093937. Epub 2015 Oct 15. Review.

PMID:
26472065
20.

Native SILAC: metabolic labeling of proteins in prototroph microorganisms based on lysine synthesis regulation.

Fröhlich F, Christiano R, Walther TC.

Mol Cell Proteomics. 2013 Jul;12(7):1995-2005. doi: 10.1074/mcp.M112.025742. Epub 2013 Apr 16.

Supplemental Content

Support Center