Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 84

1.

Understanding the oriented-attachment growth of nanocrystals from an energy point of view: a review.

Lv W, He W, Wang X, Niu Y, Cao H, Dickerson JH, Wang Z.

Nanoscale. 2014 Mar 7;6(5):2531-47. doi: 10.1039/c3nr04717b. Epub 2014 Jan 31.

PMID:
24481078
2.

An energy investigation into 1D/2D oriented-attachment assemblies of 1D Ag nanocrystals.

Lv W, Yang X, Wang W, Niu Y, Liu Z, He W.

Chemphyschem. 2014 Sep 15;15(13):2688-91. doi: 10.1002/cphc.201402150. Epub 2014 Jun 20.

PMID:
24954815
3.

Separation-dependence evolution of inter-particle interaction in the oriented-attachment growth of nanorods: a case of hexagonal nanocrystals.

Song Y, Liu A, Pan Y, Wang X, Hu J, Hou X, Lin X, He W.

Analyst. 2014 Jul 7;139(13):3393-7. doi: 10.1039/c4an00187g.

PMID:
24816566
4.

Impact of the colloidal state on the oriented attachment growth mechanism.

Dalmaschio CJ, Ribeiro C, Leite ER.

Nanoscale. 2010 Nov;2(11):2336-45. doi: 10.1039/c0nr00338g. Epub 2010 Sep 8.

PMID:
20835441
5.

Quantitative evaluation of Coulombic interactions in the oriented-attachment growth of nanotubes.

Zhang Y, He W, Wen K, Wang X, Lu H, Lin X, Dickerson JH.

Analyst. 2014 Jan 21;139(2):371-4. doi: 10.1039/c3an01261a.

PMID:
24255914
6.

The evaluation of Coulombic interaction in the oriented-attachment growth of colloidal nanorods.

He W, Lin J, Lin X, Lu N, Zhou M, Zhang KH.

Analyst. 2012 Nov 7;137(21):4917-20. doi: 10.1039/c2an35950b. Epub 2012 Sep 24.

PMID:
23008830
7.

An analytical expression for the van der Waals interaction in oriented-attachment growth: a spherical nanoparticle and a growing cylindrical nanorod.

He W, Lin J, Wang B, Tuo S, Pantelides ST, Dickerson JH.

Phys Chem Chem Phys. 2012 Apr 7;14(13):4548-53. doi: 10.1039/c2cp23919a. Epub 2012 Feb 24.

PMID:
22361953
8.

Colloidal branched semiconductor nanocrystals: state of the art and perspectives.

Li H, Kanaras AG, Manna L.

Acc Chem Res. 2013 Jul 16;46(7):1387-96. doi: 10.1021/ar3002409. Epub 2013 Jan 31.

PMID:
23369428
9.

Progress of nanocrystalline growth kinetics based on oriented attachment.

Zhang J, Huang F, Lin Z.

Nanoscale. 2010 Jan;2(1):18-34. doi: 10.1039/b9nr00047j. Epub 2009 Oct 5. Review.

PMID:
20648361
10.

Numerical simulations of sonochemical production and oriented aggregation of BaTiO3 nanocrystals.

Yasui K, Kato K.

Ultrason Sonochem. 2017 Mar;35(Pt B):673-680. doi: 10.1016/j.ultsonch.2016.05.009. Epub 2016 May 9.

PMID:
27180048
11.

Oriented attachment kinetics for ligand capped nanocrystals: coarsening of thiol-PbS nanoparticles.

Zhang J, Wang Y, Zheng J, Huang F, Chen D, Lan Y, Ren G, Lin Z, Wang C.

J Phys Chem B. 2007 Feb 15;111(6):1449-54.

PMID:
17286356
12.

Direction-specific interactions control crystal growth by oriented attachment.

Li D, Nielsen MH, Lee JR, Frandsen C, Banfield JF, De Yoreo JJ.

Science. 2012 May 25;336(6084):1014-8. doi: 10.1126/science.1219643.

13.

Pure multistep oriented attachment growth kinetics of surfactant-free SnO2 nanocrystals.

Zhuang Z, Zhang J, Huang F, Wang Y, Lin Z.

Phys Chem Chem Phys. 2009 Oct 14;11(38):8516-21. doi: 10.1039/b907967j. Epub 2009 Jul 27.

PMID:
19774282
14.

NaOH concentration effect on the oriented attachment growth kinetics of ZnS.

Wang Y, Zhang J, Yang Y, Huang F, Zheng J, Chen D, Yan F, Lin Z, Wang C.

J Phys Chem B. 2007 May 17;111(19):5290-4. Epub 2007 Apr 24.

PMID:
17451269
15.

Can oriented-attachment be an efficient growth mechanism for the synthesis of 1D nanocrystals via atomic layer deposition?

Wen K, He W.

Nanotechnology. 2015 Sep 25;26(38):382001. doi: 10.1088/0957-4484/26/38/382001. Epub 2015 Sep 3.

PMID:
26334690
16.

Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment.

Evers WH, Goris B, Bals S, Casavola M, de Graaf J, van Roij R, Dijkstra M, Vanmaekelbergh D.

Nano Lett. 2013 Jun 12;13(6):2317-23. doi: 10.1021/nl303322k. Epub 2012 Nov 7.

PMID:
23050516
17.

Investigating the magnitude and source of orientation-dependent interactions between TiO2 crystal surfaces.

Li D, Wang H, Xiao D, Song M, Legg B, Chun J.

Nanoscale. 2017 Jul 27;9(29):10173-10177. doi: 10.1039/c7nr03535g.

PMID:
28702624
18.

Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses.

Wolff A, Hetaba W, Wißbrock M, Löffler S, Mill N, Eckstädt K, Dreyer A, Ennen I, Sewald N, Schattschneider P, Hütten A.

Beilstein J Nanotechnol. 2014 Feb 28;5:210-8. doi: 10.3762/bjnano.5.23. eCollection 2014.

19.

Imperfect oriented attachment: dislocation generation in defect-free nanocrystals

Penn RL, Banfield JF.

Science. 1998 Aug 14;281(5379):969-71.

20.

Mechanisms of oriented attachment of TiO2 nanocrystals in vacuum and humid environments: reactive molecular dynamics.

Raju M, van Duin AC, Fichthorn KA.

Nano Lett. 2014;14(4):1836-42. doi: 10.1021/nl404533k. Epub 2014 Mar 10.

PMID:
24601782

Supplemental Content

Support Center